
71?c _ e/_ 7
IIV "_ 2- f

SANTA CLARA UNIVERSITY _.

_ l_e-p-a-_ent of Electrical Engineering and Comuter Science

"Performance Analysis of Local Area Networks"

Final Report

Submitted to:

Mr. John Yin, Manager

Communications and Networks Development

Branch

NASA-Ames Research Center, MS 233-18

Moffett Field, CA 94035

Prepared by:

Dr. Hasan S. AiKhatib, PI

and

Ms. Mary Grace Hall, IRA

Department of EECS
Santa Clara University

Santa Clara, CA 95053

July, 9, 1990

(NASA-C°-I66039) PERPORMANC£ ANALYSIS OF

LOCAL ARLA NETwnRK$ Final Repor_ (Santa
C!_ra Univ.) 99 P CSCI 09q

_3/o2

N90-247_7

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

DESCRIPTION OF SIMULATION LEVELS

I. LEVEL_0

II. LEVEL_I

III. LEVEL_2
IV. NETWORK

IMPLEMENTATION OF NETWORK LAYERS

I. IMPLEMENTATION OF HOST LAYER

HOST TRANSMITTER

HOST RECEIVER

II. IMPLEMENTATION OF TCP LAYER

TCP TRANSMITTER

TCP RECEIVER

III. IMPLEMENTATION OF IP LAYER

IP TRANSMITTER

IP RECEIVER

IV. IMPLEMENTATION OF CSMA/CD LAYER

CSMA/CD TRANSMITTER

CSHA/CD RECEIVER

CSMA/CD CHANNEL

MAKEFILE DESCRIPTION

CONCLUSION

3

4

5
5

6

6

7

9

9

9

9

10

i0

i0

Ii

II

II

12

12

13

14

15

16

PRECEDING PAGE BLANK NOT FILMED
2

ABSTRACT

This report describes a simulation of the TCP/IP protocol

running on a CSMA/CD data llnk layer. The simulation was

implemented using the simula language, an object oriented
discrete event language. It allows the user to set the number of

stations at run time, as well as some station parameters. Those

parameters are the interrupt time and the dma transfer rate for
each station. In addition, the user may configure the network at

available, and the parameters of both types are read from input

files at run time. The parameters include the dma transfer rate,

interrupt time, data rate , average message size, maximum frame

size and the average interarrival time of messages per station.
The information collected for the network is the throughput

and the mean delay per packet. For each station , the number of

messages attempted as well as the number of messages successfully
transmitted is collected in addition to the throughput and mean

packet delay per station.

f-

3

INTRODUCTION

The purpose of this simulation is to allow a user to model a
network with specific station parameters to see the
characteristics of its behavior. In this way, an existing network
may be examined, as well as the effect of any change on the

network. For example, to see the effects of adding a station to

an existing network without actually doing it, the network could
be simulated with the added station using this tool. The

simulation could be run with varying characteristics of the added

station, and the performance of the network under those
conditions could be examined.

To implement this simulation, four basic layers were

deliminated. They are the host,tcp,ip,and csmacd. (The host
layer basically encompasses user and high level characteristics.)

Within each layer, the basic functionality of each was modeled

using petri nets. For each layer, a transmitter and a receiver
entity were defined. Using the petri nets, the possible states
were modeled as well as the events that cause state transitions

to occur.

Because simula supports the notion of inheritance, common

characteristics were grouped together in progressive levels of

definition. For example, each entity requires a buffer to store

messages in, whether it is part of the host,tcp,ip,or csmacd

layer. Therefore , in implementing the lowest level of this

simulation (level_0) the class entity was declared with all the
common characteristics defined at that level, including the

buffer. Subsequent levels were progressively defined based on

preceeding level class declarations until the specific functions

for each layer of the network simulated were implemented.
To allow the user to set variables at run time , this

simulation is invoked at the topmost level (network level)

after prompting the user for the configuration parameters. These

parameters are then passed down to the lower levels as needed, or

used as global variables when appropriate.

To sum up, it requires eight entities to represent a single

station; a receiver and transmitter for each of the host,tcp,ip,

and csmacd layers.

DESCRIPTION OF SIMULATION LEVELS

Because simula supports the notion of inheritance,the
software was designed in a series of levels, each one defining
structures that are common to the next level. This was done to
make the software easier to modify and adapt to future changes,
for example modeling a different network protocol. It also
maintains the commonality of the software, and helps simplify the
design.

The levels designed are level_0,1evel_l,level_2 and the
network level. They are described below.

I. LEVEL_0

Level_0 contains the fundamental building blocks of the
simulation, the entity and its supporting structures. The process
class entity describes the fundamental process structure that all
of the station processes require. That is, all the transmitters
and receivers of the host,tcp,ip, and csmacd layers.

Each of these processes require a variable state, used to
define the current state of the entity (FREE,SENDING,RECEIVING,
etc). Upon creation, each entity is set to the FREE state. In
addition to the state, each entity also requires a buffer for
holding messages or frames and a frame pointer. For ease in
programming, a variable return_code is defined to hold the return
value of procedure calls.

In addition to the declared variables, the process entity is
called with several arguments that define station
characteristics. This was done to allow these values to be read
from an input file. A title is passed in for use in debugging and
future plotting. The id number refers to the id number of the
station. Although the id number is common to each of the eight
entities that represent a station, it must be passed individually
to each entity at the time of creation. It is through the id
number that each station knows itself. It is used as an array
index. For example, tx_ip(id) would activate tx_csmacd(ip) to
pass a frame. The dma_xfer_rate and interrupt_time are also
station parameters. These are read from the input file, and
passed down to the creation of the entity.

The basic class message is also defined in this layer. It

contains all the variables required to collect data about the

message for later analysis. The basic definition is that of a

link class for manipulation in a queue.

The last significant variable defined in this level is the

variable u. This variable is used as a random seed generator.

5

II. LEVEL_I

Level_l begins the separation of network layers. In the
level, the entity classes host,tcp, ip, and csmacd are defined.
All aspects that are common to the transmitter and receiver of
each network layer are defined here. For example, both the
transmitters and receivers of each layer must receive frames from
their adjacent layers, so a procedure receive is defined for each
entity class.

In addition to the network layer classes, the class window
and tcp_timer are defined for use by the tcp layer. The window
controls how many messages may be outstanding at once, and the
timer is set whenever a transmission is sent.

III. LEVEL_2

Level_2 defines the structure of the network. It contains
includes for all the specific entities that define a station

(tx_host,rx_host,etc). These entities are described under
IMPLEMENTATION OF NETWORK LAYERS. This layer revolves around the

' variable hum_of_stations, which is passed in as a calling

argument. The num_of_stations sets the number of stations for the
simulation. The entities that define each station are declared as

arrays from one to the num_of_stations. In order to declare a

variable size array, the array parameter must be passed in as a

calling argument. Besides declaring the arrays of entities that

compose the stations, the entities are also instantlated and

activated. They are instantiated to allow the creation of their

support structures, such as their buffers. The activation allows
for the initialization of the entities to their first passivation

point in the while true loop, which is where they begin to loop

on their subsequent states.
Since the simulation allows for more than one type of

station at the user's discretion, stations are created using two

for loops. The for loops are controlled by the num_typea_stations

and num_of_stations. The first loop from one to

num_typea_stations configures stations with the variables

dma_xfer_rate and interrupt_time. This represents the creation of

type a stations.

The second for loop runs from num_typea_stations + 1 until

num_of_stations. This creates stations of type b, using the

variables b_dma_xfer_rate and b_interrupt_time. This method

results in type a stations having the lowest id numbers. For

example, if the user chooses to have twenty stations total and

five type a stations, then the stations with id numbers from one

to five will be the type a stations and the stations with id

numbers from six to twenty will be type b stations.

In addition to the declaration of the entities that comprise

the stations, a collection queue is also listed as an include
file at this level. The collection queue collects all data used

to measure performance.

6

IV. NETWORK

The network level performs two basic functions: it manages
all user interface and calls the simulation. In order to call the
simulation, all variables required by the simulation must be set.
This is accomplished both by absorbing the user inputs and
calculating certain key variables. The network level also
controls the length of the simulation, based on the number of
messages successfully transmitted per station.

The user interface is composed of two parts, prompting the
user and writing data collected to an output file. The user is
prompted for the number of stations and their type. To choose the
type of station, three options are offered: type_a stations,
type_b stations or a mix of the two. If a mix of station types is
chosen the user is again prompted for the number of type_a
stations. If the user chooses to have more type_a stations than
the number of stations, the value is automatically reset to the
number of stations. No other error checking is performed on the
user input.

After the number and type of stations have been defined, the
input files are read to obtain the values of station
characteristics. There are two station types currently
implemented, and the corresponding values of these types are
contained in the file " station_typea" and "station_typeb". The
names of the input files are directly referenced in the network
layer. To add another input file containing station
characteristics, the network layer would require modification.
The modifications required would be the addition of the new input
file, and the definition of new variables for the dma_xfer_rate
and interrupt_time, which are currently the only difference
between the station types. The new variables would be passed as
calling arguments to the simulation.

The format of the input files is identical, regardless of
the station type they define. The input files are read using the
read_input routine, which assigns the values in the file to the
corresponding variables. For this reason, the order of the values

in the file is crucial for correct assignment. The read_input

routine reads a single value from each line of the input file.

The variables read in their assigned order are data_rate,

interrupt_time, dma_xfer_rate, aver_arrival_time, prop_delay,

max_frame_size, and aver_msg_size. All the values are real except

the last two, which are integer.

The output file is written at the end of the simulation. It

contains information on the throughput and average delay per
frame for the individual stations and the whole network. Also

included is the number of successful and rejected messages per

station as well as the simulation time required. All values are

calculated in the collectlon_queue routines. The output is

written to a file "output" using the print_data routine. The file

name is directly referenced in that routine. A modification to

the output file would require changes to be made to the

print_data routine, and the collection_queue routines that

7

calculate the data.

After the input files have been read,the value of tau is
calculated. The simulation is called with the value of tau and
all variables read from the input files as calling arguments. The
simulation then loops until each station achieves a minimum
number of successful transmissions. The data is then collected,
first on a per station basis and then for the network as a whole.
It is then printed, and the program terminates.

.

IMPLEMENTATION OF NETWORK LAYERS

Each of the layers described below represents a network

level protocol. They are represented by both a transmitter and

receiver entity concerned with the passage of messages. The

various states of the entities are listed,along with events that
cause a state transition.

I. IMPLEMENTATION OF HOST LAYER

The host layer of this simulation represents all upper

layers of network protocol above the tcp layer. In this layer the

arrival of new messages is generated and their final reception
occurs. This is accomplished by use of message queues, one for

the transmitter and one for the receiver.

HOST TRANSMITTER

The host transmitter has no defined states. It loops on

generating messages. After a message is generated, the host

transmitter checks to see if the tcp transmitter is idle. If it

is, it activates it, holds for an interrupt time, and then loops

back to generate the next message.

The generate_messages procedure of the host transmitter is

responsible for setting message parameters and their arrival

rate. It begins by using the global variables aver_arrival_time
and u to get a random arrival time. It holds for this amount of

time before proceeding to simulate a poisson arrival rate.

The queue length is checked next to see if it is less than

MAX_HOST_MESSAGE_COUNT. This is done because of the memory

constraints imposed running the simulation. It is desirable to

have no restrictions on the number of messages the host

transmitter may generate,but since the arrivals of the messages

is a poisson process, it has no memory of past arrivals. So the

modeling of the arrivals remains valid.
If there is room in the message queue, a new message is

created. The time of creation is noted for bookkeeping purposes.

A random destination other than its own address is generated. The

size of the message is assigned using the global variable

aver_msg_size. The message is placed in the queue so that the tcp

transmitter may process it. The host transmitter then loops back

around to generate the next message.

HOST RECEIVER

The host receiver has two states: FREE and RECEIVING. The

FREE state is the idle state, when the host receiver is ready to

process the next message. The receiver is capable of receiving

more than one message in its queue at once, as compared to the

lower layers that process one frame at a time.
When a message arrives, a state transition to RECEIVING

occurs. The message is taken out of the queue and discarded,

9
=

since all bookkeeping regarding the message is done by the tcp
receiver. The state then transitions back to free after holding

for an interrupt time.

II. IMPLEMENTATION OF TCP LAYER

The tcp layer is composed of two entities, the transmitter
and the receiver as well as a number of supporting structures for

the processing of messages. On the transmitter side this layer

receives messages from the host, and breaks them into frames for
transmission. On the receiving side, it re-assembles the frames

back into messages and passes them to the host. The top layer is

responsible for determining if frames sent have been received.
Positive acknowledgements are used to accomplish this. A buffer

and a window are used to process messages. Although each of these

has a maximum size, if there is not enough room to process the

messages, this upper limit is simply increased to accomodate
them. To decrease the number of transmissions across the network,

TCP TRANSMITTER

The tcp transmitter has three states: FREE, RECEIVING, and

SENDING. The FREE state is the idle state, with no messages to

process or packets to send. If there are any messages from the

host layer of that station to transmit, a state transition to the

RECEIVING state occurs, provided that the buffer of the tcp
transmitter is not full.

In this state, messages are removed from the host message

queue and packetized for transmission. They are also added to a

collection queue for easy data retrieval when the transmission is

completed.

The tcp transmitter removes messages directly from the host

message queue of that station. In addition to transmitting

messages, it also transmitsacknowledgements and re-transmits

packets that have timed out. If there are any acknowledgements,

time-outs, or data packets to send a state transition to the

SENDING state occurs. In this state, _whenever a transmission is

sent a timer is set. Should the timer expire before an

acknowledgement for the transmission is received, the
transmission is resent and the timer reset.

Transmissions are sent on a priority basls.The message with

the highest priority is an acknowledgement, followed by a re-

transmission of a message that has timed out and lastly a data

packet.

TCP RECEIVER

The tcp receiver has two states: FREE and RECEIVING. The

FREE state is the idle state, when the tcp receiver is available

to receive and has no frame to process. In this state, it
activates the ip receiver in case it has any frames to send and

then passivates.

When a frame arrives, a state transition to RECEIVING
occurs. The type of the frame is checked to see if it is a data

10

frame and/or an acknowledgement frame. If it is an acknowledgement
frame, the procedure ack_message of the transmitter is called to
process it. A data frame is processed by the receiver.

Next the frame is removed from the window and the buffer,
and the sizes are adjusted accordingly. If the frame is the last
data frame of a message_ the message is re-assembled and
forwarded to the host receiver. The host receiver is then
activated to process the message.

III. IMPLEMENTATION OF IP LAYER

The ip layer implementation is composed of two entities, the
receiver and transmitter. It is a very simple layer that receives

a pointer to the buffer contents and passes it to the next

appropriate layer. Both entities receive packets through their
receive routines. In this layer, the frame pointer is checked

directly rather than the state of the buffer. Only one packet is

required for the entity to activate itself.

IP TRANSMITTER

The ip transmitter has three possible states: FREE, READY,

and SENDING. FREE represents the idle state, with no frame in the
buffer. When a frame is received, a state transition to the READY

state occurs. At this stage, the ip transmitter is ready to

transmit a frame to the csmacd layer. It calls the receive

routine of the csmacd transmitter for that station, and attempts

to pass the frame. It loops in that state until the frame is

successfully passed to the csmacd transmitter.
When the frame is successfully passed, the state transitions

to SENDING. At this point the ip transmitter activates the

transmitter entities of the tcp and csmacd layers for that

station, and resets itself.

The ip transmitter also allows for a failed transmission. If
the csmacd layer of that station is unable to transmit the frame,

it calls the routine transmit_failed. This routine in turn calls

the transmit_failed routine of the tcp transmitter of that

station.

IP RECEIVER

The ip receiver has two states: FREE and BUSY. The FREE
state corresponds to the idle state, when the receiver is
available to receive and has no current frame. In this state, the

receiver of the csmacd layer for that station is activated in
case it has a frame to send to the ip receiver. If the ip

receiver receives a frame, it transitions to the BUSY state. It

loops in that state until it successfully transmits the frame to

the tcp receiver. Whether the transmission is successful or not,
it activates the receiver of the tcp layer to allow any possible

state transitions of that layer to occur.

After a successful transmission to the tcp receiver, the

frame pointer is reset to none and the state is set to FREE.

11

IV. IMPLEMENTATIONOF CSMA/CD LAYER

The csmacd layer implementation is based on the petri net
model of the csmacd. It is composed of two entities, the receiver
and transmitter as well as the definition of a class
channel_csmacd. The entities are processes that have the
capability of activating and passivating themselves. Class
channel_csmacd, on the other hand, is a simple class definition
that basically consists of a queue. The buffer for the csmacd
layer is actually implemented as a characteristic of the csmacd
receiver and transmitter. That is to say, both the transmitter
and the receiver each have their own buffer.

Both entities receive packets through their receive
routines, which check to see if the buffer is available. If it
is,it accepts the incoming packet and sets the buffer state to
FULL. Only a single packet is required to set the buffer state to
FULL. If the buffer is FULL when an incoming packet arrives, it
is ignored.

Each csmacd entity is designed as a forever true loop. If
there is an incoming message in the buffer or a state transition
has occurred, it loops determining through the next state
procedure if another transition can occur. When all possible state
transitions have been exhausted, it passivates. To be awakened,
the csmacd transmitter must be called by the ip transmitter. The
csmacd receiver, on the other hand, may be awakened either by a
sending csmacd transmitter or by its ip receiver layer.

For each possible state shown on the petri net, there is a
subroutine. The state subroutines are contained in csmacd_txs for
the transmitter, and csmacd_rxs for the receiver. These
subroutines check for potential transitions, and return a boolean
value of true if a transition of state occurs.

CSMA/CD TRANSMITTER

The csmacd transmitter has five possible states:

FREE, WAIT_FOR_RE_TX, ATTEMPT_TX,and ACQUIRE_CHANNEL.
these states will be described below.

DISABLED,
Each of

The FREE state represents the idle state, when the

transmitter is not engaged. In this state, for a transition to

occur, the buffer must be full and the channel must be free. If

this is the case, the state transitions to ATTEMPT_TX. If the
buffer is full, but the channel is not free the transmitter waits

in the channel queue until the channel becomes free.

The ATTEMPT_TX state represents the transmitter attempting

to transmit a packet. In this state, the transmitter holds for a
peroid of tau, and then checks the channel_state variable to see

if it is zero. If it is, it increments the channel_state variable
and holds for another tau It then checks to see if the

channel_state variable is greater than one. If it is, a collision

has occurred. If not, it ends the collision window and

12

(

transitions the state to ACQUIRE_CHANNEL. If a collision occurs,
the state is set to DISABLED. So, from the ATTEMPT_TX state there

is always a state transition to either ACQUIRE_CHANNEL or
DISABLED.

The DISABLED state represents the period when a station
realizes it has has collided with one or more stations and must

jam transmissions. Each station involved in a collision will

independently realize the event by checking the channel_state
variable. In this way, the channel remains a passive element and

the individual stations are the active determinants of their

state.

When a station realizes it is disabled, it holds for a Jam

time of two tau and then changes state to WAIT_FOR_RE_TX. It

decrements the channelstate variable and checks to see if the

variable has returned to zero. This indicates that the jam is

over, and all stations involved are ready to wait for re-

transmission. If the jam is over, the station will check the

channel queue to see if there were any stations that were waiting

for the channel. If so, it wakes them up. In this way, preference
for new transmissions over transmissions involved in a collision

is preserved.

In the WAIT_FOR_RE_TX state, the station checks to see if it

has attempted to send the transmission more than max_tries (

sixteen attempts). If it has, it retrieves the frame from the
buffer and calls the transmit_failed routine of the station's ip

layer. The csmacd transmitter is reset for the next transmission

and the ip transmitter is activated.
If the csmacd transmitter has not exceeded max_tries, it

increments a binary backoff variable n, and generates a random
number in the window of 2**n - 1. It holds for that time times

tau, and then transitions back to the FREE state to attempt to

transmit again.

The ACQUIRE_CHANNEL state represents the station

transmitting. In this state, the collision window has ended and

the station definitely has the channel. The transmission time is

calculated based on the bits per packet divided by the data rate.

The transmitter simply sends the message by calling the receive

routine of the destination csmacd receiver, and then activating

it. No attempt is made to determine if the transmission is

successfully received. The csmacd receiver is then reset (the

buffer is empty and the state is FREE) and the ip transmitter is
activated.

CSMA/CD RECEIVER

The csmacd receiver has three possible states: DISABLED,

FREE, and RECEIVING. Because it is impossible for a receiver to

receive an unsuccessful transmission in this simulation, only the
FREE and RECEIVING states are modeled. These states are described

below.

The FREE state represents the idle state of the csmacd

13

[

receiver. In this state, the receiver checks to see if the buffer

is full. If it is, it resets the state to receiving. If not, it

does nothing.

The RECEIVE state attempts to pass the buffer contents to

its ip receiver. It calls the ip receive routine to pass the

buffer contents, and holds for rx_delay. The ip receiver is
activated, and the csmacd receiver is reset (the buffer is empty

and the state is FREE) If the csmacd receiver is unsuccessful

in attempting to pass its buffer contents to the ip receiver, it

passivates until re-awakened by the ip receiver or a csmacd
receiver.

CSMA/CD CHANNEL

The csmacd channel is not a process class, but a simple

class definition. It is composed of a queue and a class state

variable. The queue is used for stations wishing to transmit

when the channel is already in use. When the channel becomes free

(after a successful transmission or at the end of a Jam) the

stations in the queue are all activated at once and allowed to
contend for channel acquisition. If more than one station is in

the queue, this generally results in a collision with normal
contention resolution. In this way, the behavior of the csmacd

protocol is preserved.

Access to the channel is controlled by the channel state

variable. If the channel state variable is zero, the channel is

free and a station may transition state to ATTEMPT_TX. If it is

not zero, the station enters the channel queue.

To simulate the collision window, two possible cases are
considered. After a station has transitioned states from FREE to

ATTEMPT_TX, it holds for a period of tau. It next checks the

channel state variable to see if it is still zero. If it is, no

collision has occurred yet and it continues to attempt to gain

the channel. If it is not, the station has collided with another
station and it holds for another tau and follows the collision

protocol.

If no collision occurs within the first tau period, the

station attempting to transmit increments the channel state
variable and holds for another tau. It then rechecks the channel

state variable to see if it is greater than one. If it is,

another station is also attempting to transmit and a collision

has occurred. If not, it has successfully gained the channel.

At the end of a successful transmission, the station

decrements the channel state variable and it returns to zero,

thus leaving the channel in a free state. In the case of a

collision, as each station completes the hold for the Jam time,

it decrements the channel state variable and checks to see if it

has returned to zero. If it has, all stations involved in the

collision have now completed their jam and the channel is free.

Any stations in the channel queue are now awakened to compete for

the channel. If the channel state variable is not zero, all

station involved in the collision have not completed their Jam
and the channel is not free.

14

MAKEFILE DESCRIPTION

A makefile is available to compile all code required by the
simulation. By typing make, an executable called network will be
built. Since the system file that contains the grammar rules used
by make does not include the simula language, all dependencies
and rules for construction must be explicitly stated. This is
difficult to implement in simula, since compiling a ".sim" file
results in the creation of a ".o" file and a ".s" file. The ".o"
file contains the object code, and the ".s" file is used by the
assembler phase of compilation. To make use of the make utility,
it was decided to state dependencies based on the ".o" files
alone, since the ".s" files are automatically generated with the
compilation anyway.

To add a new simula file to the list of files to be
compiled, the following format should be used:

new.o: new.sim
$(SIM_COMP) $*
$(SIM_ASM) $*.o $_.s

To add a simula file that will be used as an include file in
another simula file, the dependency is listed directly:

old.o: new.sim \
other_include.sim

The above steps will insure that the dependencies are always
correct, so that recompilation of the appropriate files is
automatic after any modifications.

The makefile contains two targets, the network executable
and a debug executable. To use the debugger, code must be
compiled with the debug option and thus it is included. To make a
debug executable, type " make dnetwork". This will compile the
code with a debug option.

When one simula file is used as an include file in another
simula file, no separate ".o" file is created for the included
".sim" file. Instead, the simula code in the include file is
incorporated in the ".o" file generated for the master file. That
is why the included ".sim" file is listed as a dependency for the
master ".sim" file rather than its ".o" file that one might think
should be created.

15

CONCLUSION

In its current state of implementation, this simulation

models only LAN composed of stations. A logical progression would
be to implement bridges to allow for a more complex LAN. This

could be accomplished by creating another layer above the network

layer to call the simulation. Since the network layer as

currently implemented is a simulation call, it would have to be
modified so that there is a single simulation running rather than

a series of network simulations.

Another area of future development is the user interface.

Currently, a simple menu is presented to the user and they type
in the letter corresponding to their choice of station type. As

the user definable parameters increase, a graphical menu

interface may be more appropriate.

16

i_ v
I |

!

i

...,

ORIGINAL PAGE IS
OF POOR QUALITY

SANTA CL.ARA UNIVERSITY

DIZVEI...OF'IZDI--OF,'NASA/AMES

NC[}2 - 554

I:'I-RFOI:_MAI_CE ANAI_YSIS OF I_AN

I

th:is file contains the lowest level declarations

required in this simulation. Most of the following classes

are ei'ther inhertted or referenced by succeeding claE......

!*** ;

,SIMUI...ATIOI"I CLASS level...O;

BEG Z I'-I

IFtTEGER u; _ seecl number for ranclom
number generator;

141EAD CLASS message._queue (ti tle)

VAL.UE title; TEXT tit].e;

B E G I N

END ;

' .IIqK CLASS datauni'l:;
(_$EGIN

INTEGER bytes, dest_addr_ source acldr

l.-ZlqD ;

dataunit CLASS message;

BEGIN

IN]'EGER type, id;

long real createtime, donetime;

long real time_per_message;

BOOI_EAN rejected;

END ;

createtime := O.O;

donetime := O.O;

•kime._ per_message := 0.O;

rejected := I-ALSE ;

message CLASS frameunit;

BEGIN

RIEF (message) msgptr;

INTEGER seqnum, acF'_um, setwindow;

BOOLEAN ack, fin ;

ack := FALSE;

fin := FALSE;

'],.ID ;

HEAD CLASS buffer;

B [""G I N

REF(frameunit) front, tail, current, msgtail_

INTEGER maxsize, cLLrsize;

IIqTEGER state;

!buffer ref. frame pointers;

i

E.ND ;

•front :- NOI,IE;

tail :- NONE;

current :-- NoIqE;

msgtail :-- NONE;

o0 , " .'_C"FROCE.,.o CLASS "timer;
BFG.T.N
.... , " i
1NXEGER status;

END--of time r ;

PRCICE-'.SS CLASS entity(title,icl,dma xfer rate,interrupt..t:Lme);

VAI_UE title; TEXT title;

].'NTEGER icl ;

_CoIlg real dma...xfer_r_._te;
lorlg real interrupt time;
BEG I N

RFF (buffer) bur ;

RFl--(frameunit) frame;

INTEGER state;

INTEGER return_code;

!** ;
I .
• .q

! .
• ,

I

(

! .
° ,

|

! •
• _

!

I .

I

I

I

! •

1

!

! w
• ._

!** ;

procedure reset
begin

reset the variables_

state := O_ _ this sets it to free;

frame :- none

procedure reset;

called by: spec:ific process reset routines;

calls: none;

returns: none;

globals used: ;

state := FREE(set to 0);

frame := none;

actions: ;

resets the entity variables;

end ;

"-L .

' main body, set variables;

beg in

' get buffer,set buffer state to EMPTY;

bur :-new buffer;

buf.state := 0;

v set state of entity to FREE:

state := O;

end ;

main program of simulation;
BEGIN

u := 1000003;

I'.{ND***MAI NPROGRAM***;

END***SIMULATION*** ;

i initialize seed;

(

SANTA CLARA UNIVERSITY

...... w mDI:.VI:.I_OI-LDFOR NASA/AMI.:.':S

FICC_-- 5 _4

!level: l.sim .- sLtbclass of level._O ;
I

"t.his file inherits allkxlowledge of

level. 0 simulation and declares classes thai:

clefine common characteristics of the layers

modeled in "LI'I:Ls simulaton.,,_

level O CLASS].eve]._1:
BEGIN
u •
,:.I I,I['L.UDE clef ine_.def, sire

entity CLASS hos'L;
BEGIN

ref (message__queue) msg_clueue ;

: -,"(message) host msg;
i

END++OF++HOST ;

entity CI...ASS "Lop ;
BE:GIN

REl--(window) win;

RE-F(frameuniL) lastsent;

REF(timeout queue) timeoutq._

BOOI_EAN timed out, next msg;

INTEGER timeout count;

INTEGER buf_space, last byte_sent;

integer procedure receive(recvframe);

REF (frameunit) recvframe;
I

! procedure receive

! This proceclure handles the addition of frames to the top

! buffer. If there is room in the buffer the frame is

! added and the buffer parameters and pointers are upciatecl, ;

! otherwise the receive fails.
I

Returns: OK, FAILED

! Globals: buf (current buffer)
I

beg in

integer rc_
if buf.sLate = EMPTY then

begin ' buffer is empty, receive the frame & update pointers ;

bur.front :- recvframe;

buf.current :- re(:vframe;

buf.tail :- recvframe;

buf.state ::= NENF; ! update the state of the buffer ;

nexL msg := TRUE; _ set flag to indicate message ready Lo send ;

rc := OK; _ set the return code to indicate success ;

go to Return; _ processing complete, leave this procedure ;
e n d

e].se if buf.state = NENF then

begin _ buffer is not empty, not full, check size of frame ;

:i.f (buf.maxsize >= buf.cursize + rec:vframe.bytes) then

begin _ ol<ay to receive frame, receive it & perform updates ;

recvframe. INTO(buf) ;

buf.tail :.- recvframe;

if (buf.current == NONE) then

beg in

buf.current :- recvframe;

end ;

rE := OK;

go I:.oReturn ;

end else begin ! no room for frame, set buffer to FULL & fail receive;

buf.st:ate := FUI._L;

rc := FAILED;

go to Return;

end ;
end

else if bur.state = FULL then

begin _ buffer FULL , receive fails

rc := FAILED;

go to Retur'rl;

end ;
Re tu rn :

beg i n

receive :: rc;

if (re = OK) then

begin _ if status okay, update the buffer's current size ;

bur.outsize := buf.cursize + recvframe.bytes;

end ;

end ;

end---ofreceive ;

procedure reset buffer;
I

! procedure reset., buffer

! This procedure reset all the buffer parameters to their ;

! initial (empty) state.

! Globals: bur (current buffer)

beg i n

end ;

buf.front :- NONE;

buf.current :-- NONE;

bur.tail :- NONE;

bur.state := EMF'TY;

buf.cursize ::: O;

integer procedure outofbuf(msg id);

INTEGER msg_id;
I

|

! This procedure removes all the frames of a given message ;

! from the tcp bu-f:fer and performs the required upclates

(-o I,:.eep the buffer current.
i

! Rei'urns: OK

! Globa].s : buf_space, buf, nex t_msg, return code

beg in
REF(frameunit) outofptr., currentptr;

in teger COUrt t ;

(::ount := O;

currentptr :- buf. FIRST; _ start at the beginning of the buffer(l'_uf)

return code := FAILED;

!("

while currentptr--=/=NONE do ! search unt:L1 end of bur reached

beg i n
c:ount ;== count +l; v trace through "the loop for debug ;

if currentptr.id=msg_id then

beg:i.n _ take all match:Lng id #'s out of buf ;

outofptr :- ¢:urrentptr;

currentptr :- (c:urrentptr).SUC;

outofptr.OUT;

return_code := OK;

13uf space := buf_spa(:e + outofptr.bytes;

end else

begin _ no match, update current pointer to next ;

currentl3tr :- (currentptr).SUC;

end ;

end ;

if (return_code = OK) then

beg in
buf.front :- buf. FIRST; ! update pointers if frames removed from buf ;

if (bur.front =/= NONE) then

beg in

next msg := TRUE;

end else

beg i n

rese t_ buffer ;

end ;

end ;

outofbuf ; = retLIrn code;

en cl.... of----OU tof buf ;

' if another message in buf, set flag to send:;

no more frames to send, reset the buffer ;

boolean procedure reserve_buffer space(addbytes) ;
I

! procedure reserve buffer_space
I

! this procedure checks the space in tlne buffer to see if ;

! "the entire message will fit. If so, the space is; reserved;

! and TRUE is returned, else FALSE is returned.

! prevents partial messages in the buffer.
I

: :eturns: TRUE -- success, FALSE - failure
i_. ;--

! Globals: bur (current buffer)._ buf_space
I

This

integer addbytes ;

beg i n
integer" bytes_left =

encl ;

if (bytes_left >= O) then

beg :L11

buf space := bytes_left;

reser've, l_uffer, sl_ace :== TRUI:-_;

encl else begin

bur. s i:a'l;.e := F'LJL.L. ;

rc-:serve_.buffer_space :=. FAI...C;E;

elld ;

in'teger proceclure set_donetime(msgptr);
I

! proceclure set clc)netime

This proc:edure _,et.._ the donet:i.me parameter of the message ;

_! to indicate that the message has been sent and

! ac:l-:r_c_wledgecl. This is done for data collection statistic:s;

! purposes.

'

! Returns: OK, FA.T.I...ED

! Globals: bur (current buffer)

REF (message) msgptr;

_eg in

if msgptr=/=- NONE then

beg i n

msgptr.donetime := TIME;

set_donetime := 01<;

encl else: begin

set_donetime ::= FAILED;

end ;

end ;

! chec:k for valid message pointer

set the current time to message donetime ;

status of procedure is okay ;;

beg in !main ;

' set up parameters ancl instantiate window;

win :- new window;

win.state := EMPTY;

win.maxsize := 10240;

win.cursize := 0;

timeoutq -- new timeout queue;

timeout_count := O;

timed_out :== FALSE;

next msg := FAL.SE;

end --of--ma in ;

EN:D.'_-+OF++TCP ;

entity CLASS ip;

BEGIN

BOOLEAN csmacd_rc;

! ,lean procedure receive(recvframe);

RI-I-" (frameun i t) recvframe ;

beg in

if (state = FREE) and (frame == NONE) then

beg in

state := REABBY;

frame :- recvframe;
_.-c:* _-¢"_,-i _Jc:, TI:,I I1::" •

I;

end else be(.lin

receive := FALSE;

end ;

END ;

entity CL.ASS csmacd;
BEG.T.N

boolean change state;

boolean buffer interrupt;

' flag for change of state;

' flag for frames in the buffer;

| m
• q

I .
- .i

I

I .
. .q

!
=.

I .
• .w

I

I .
..,

I

I

I

/

!

:(
-i

I

ref(frameunit) procedure get frame from_buffer;

called by: csmacd txs. acquire channel,c:smaccl rxs_id].e ;

calls: none;

returns : ;

a pc)inter to the frame from the buffer;

if the buffer is empty, l_ointer to none;

globals used: ;

bur- the current buffer;

I

! .

actions: ;

takes a frame out of tlne buffer;

should set "the buffer state to empty;

does not do so because of integrity of;

buffer during transmission ,i.e., buffer;

sllould not be released until frame is ;

transm:Ltted ;

!** ;

ref(frameunit) procedure get frame from_buffer;

beg in

ref(frame_.ulit) out_frame;

' initialize the variables;

out frame :- none;

' if the buffer isn't empty,get the frame out;

if (buf =/= none) tlnen

beg i n

if (not (bur.empty)) then

beg i n

' get the frame from the buffer

out frame:- buf.first;

out_frame.out;

' set the buffer state;

!buf.state := EMPTY;

end ;

end ;

! set the return variable;

get frame from buffer :-- out frame;

| ,I
• !!

proc:edure clear_.buffer;
I .

c:a].led by: reset ;
I u
• ._

! cal].s: none;
I u

returns: none;
I u
• q

' globa].s usecl: ;

._e_:-: below ;
I .
• ,l

a (- '1::i.oil <._: ;
! resets the csmaccl buffer variables;
I .

!** ;

procedLlre clear, l_uffer;

beg i n
J set variables back to zero;

bu f. s tat-e :::=FREE ;

re.:,el buffer irYterrupt;

l:)uffer..interrullt := false;

rand ;

' reset the frame pointers;

buf. clear ;

main body for csmacd;

beg in

change_state := false;

bLtffer interrupt := false;

end ;

END ;

CLASS winclow ;

BEGIN

REF- (dataunit) current, front, back;

II-I'TEGEF;: maxsize, cursize;

INTEGER state;

INTEGER rc; !rc-- retLtrn code;

integer procedure rxtcp_outof(frameptr);

REF(frameunit) frameptr;

beg in

c:ursize := outsize- frameptr.bytes;

if (cursize> 0) then

beg i n

state := Iql_lqF;

front :- frorY_.SUC;

=+ end else begin

reset_window ;

end ;

rxtcp outof := OK;

end--ofrxtcp outof;

REI- (frarneun i t) frame p t r ;
beg i n

end o f t x t c.'p. ou to f ;

pr'ocedure reset winclow;

beg i n

state := EMPTY;

outsize := 0;

fr'ont :- NONE;

current :- NONIE;

back :- NONE;

end ;

boolean procedure reserve.spac:e(bytes);

integer bytes;

beg i n

if maxsize ::'-.(outsize + bytes) than

beg in

cursize := outsize + bytes;

reserve space := TRUE;

end else begin

reset're_space := FAI_SE;

encl ;

end ;

procedure can c:el reserve_space (bytes) ;

integer bytes;

beg i n

outsize := cur.size- bytes;

and ;

boolean procedure addto(frameptr);

REF(frameunit) frameptr;

beg in

if state = FULL then

begin

add to := FALSE;

go to Return;

end ;
if state = NENF then

begin
if maxsize >= cursize then

beg i n

state := NENF._

current :- frameptr;

back :-.-frameptr;

addto := TRUE._

go to Return;

end ;
if maxsize < cursize then

beg in

state ::= FUL.L._

addto := FALSE;

go to Return;

end ;

end ;
i'f state : EMF'TY than

beg in

state := NE'NF;

front :- frameptr;

current :- frameptr;

addto := TRUE;
go to Return;

end ;

end ;

_)egi n
state := 0;

mncl ;

END++Or'++WINDOW ;

!*** window - main program ****!;

-IEAD [.]I_ASS timeout.queue;

beg in

,_n d ;

_.INI< CI_ASS i:imeou t_un i t ;

_)eg in

REl-(tcp) layer;

REF(tcp_timer) timerptr;

REl-(frameunit) framepi:r;

long real timeup;

integer event;

integer status;

status := I'IOT SIF._T;

J_i'_d ;

_imer CL.ASS tcp_timer;

....SIN

-(timeout_uni t) tc:p_even t _

long real ¢urrtime;

p ro red u re se tu p (t imeoLlt_even t) ;

REF(timeout unit) tirneout event;

beg i n

top_event :- timeout event;

top_event.status := SET;

end ;

procedure start;

beg i n

hold (tcp_event. time_up) ;

t imeou t_o c cur red ;

end ;

procedure timeout_occurred;

beg in

(tcp_event.layer).timeout count := (tcp_event.layer).timeout count + i;

top_event.status := FRAME TIMED OUT;

(tcp_event.layer).timed_out := TRUE;

reactivate(top_event, layer) ;

en cl ;

beg in

start;

end ;

E'ND ;

! main body;

%INCLUDE clefirle_assigr_, sire
I=" Iq T_ .

SANTA CLARA UNIVERSITY

DEVEL.OF:'ED F'OR NASA/AMIES

NC(...:.- z__,4

f this level inherits the c:haracteristics of

both level 0 and].evel .I . It specifies the
exact natur'e of all entities modeled.

!*** ;

external CL.ASS level I;

leve]. 1 c].ass leve]._2(num_of_.stations,tau,prop clelay, interrupt_time,

da'ta ra[:e, dma_xfer rate, aver arrival time.,

max frame_s:Lze,aver.msg_size,b_interrupt_time.

b dma_xfer rate,num typea_stations);

:i.nteger hum_of stations;

integer tau;

long real i_r-op delay;

].ong real interrupt_time;

long real data rate;

long real alma xfer rate_

long real aver. arriwll time_

:i.nteger max frame_size;

_ _'l:eger aver msg._size;
....,g real b clma xfer rate_

long real b_interrupt time;

integer num_typea stations

BEGIN

integer msg_count; unique message id number;

%IIqCI_UDE collection_queue.sire

"..'INCL.UDE rx host.sim

"..'INCI_UDE tx._host, sire

% INCL.UDE t c p. s i m

"._IIqCI...UDE ip. sire

%"I NCL.UDE t x_ csma c:cl. s i m

;.'IIqCI_UDE rx.._csmacd .s:i.m

;-INCLUDE channel csmaccl.sim

re'f(rx_csmacd) array srx._csmacd(l:num_of_stations);

ref(tx_csmacd) array stx_csmacd(l:num of stations);

ref(channel csmacd) schannel_csmacd;

REF (tx_tcp)

RI-F (tx.._il))
REF:" (rx_host)

[(rx "top)

R_IF (rx_ip)

REF (tx host)

RE-'.F (collec:tion_queue)

array stx tc:p(:l.:num_of_stations);

array stx_ip(l:num of statioins);

array srx_host(l:num of stations);

array srx_tcp(l:num_of stations) ;

array srx ip(1 :num of stations);

array s tx_host(l:num of_stations);

collectionq; ! collection queue for network;

INTEGER i;

B E G I N
ini t:i.a].ize variables;

:, {

!

for i := I step :L unt:Ll num_typea stai:ions do

beg in
' create entities:

srx_l_ost(i) :- new rx host("rx_host',i,
dma xfer rate,interrupt_time);

stx. top(i) :- new tx tcl_("tx_tcl_",i,
dma_.xfer rate,in terrupt time);

srx_tcl_(:L) :- new rx...tcp("rx_tcl_",i,
dma....xfer rat-e:,inte, rrupt.time);

srx ip(i) :- now rx ip("rx .tp" i
clma xfer rate,in terrupt time);

stx ip(:L) :-new tx ip('Itx ip" i
clma xfer_rate,interrupt_time);

srx csmacd(i) :- new rx ¢smacd("rx_csmacd'',i,
dma xfer rate,interrupt_..time):

stx_csmacd(i) :-- new tx csmacd(" tx csmacd ",i,
dma xfer.rate,interrupt_t:Lme);

stx hos'E(:L) :.-new tx._host("tx._host",i,,
clma_xfer rate,inLerrupt_Lime);

end ;

configure type b stations;
for i := (hum typea sta'_ions + i) step I until hum of..s'_.a'_.ions do

begin
create entities;

srx. host(i) :- new rx_host("rx_host",i,
b_dma...xfer rate,b_in terrupt time);

stx. top(i) :- new tx t(:p(" tx. tcl_",i,
b_dma_xfer rate,b_interrupt_tim('_) ;

srx tcp(i) :-- new rx_tcp("rx tcp",i,
b_dma xfer_rate,b_in terrupt time);

srx ip(i) --new rx ip("rx ip" im __ ..? ,q .q

b_dma_xfer_rate,b_.tnterrupt t:Lme) ;

: _ I p istx_ip(i) -new tx ip("tx__" ", ,
b dma_xfer_rate,b_in terrupt time) ;

srx_csma(=d(i) :- new rx csmacd("rx..csmacd",i,
b dma xfer rate,b_in terrupt time) ;

stx_csmacd(i) :.- new tx..csmacd("tx_csmacd",i,
b clma xfer_rate, b_.interrupt t'Lme);

stx_host(i) :- new tx host("tx_host",i,
b__dma xfer rate,b_in terrupt time) ;

end

for i :== 1 step 1 until num of stations clo

begin

' activate the entities;

activate srx_csmacd(i) ;

activate stx_csmacd(i) ;

activate srx ip(i) ;

activate stx_.ip(i) ;

activate srx_tcp(i) ;

activate stx top(i) ;

activate srx_host(i) ._

activate stx_host(i) ;

END;

END;

end;
declare a channel;

schannel_csmacd :- new channel csmacd;

collectionq :- new collection_queue;

msg_count := 1;

SANTA CLARA UNIVFRSITY

DIEVEi_OF'IZD FOI'R IqA,._A/AMI=,._

I'ICC_:.--.._ 54

I:'IEFd--OIRMAIqCI- ANAI..YSIS OF I_AN

beg in

external class level 2;

•%"I I,IC,I...UDIE p tom 1.3t use r. s i m

%I I,ICL.UI)E read i n pu t. sire

;:'II,ICI_UDr'. get.. tau. sire

integer num of stations;

integer num_typea_statioils;

.tn t:eger max_frame_size ;

integer aver_msg size;

].c)ng real prop_delay;

long real tau;

long real interrupt_time;

long real b interrupt_t-ime;

long real data_rate;

long real dma.. xfer_rate;

long real b_clma...xfer rate;

long real aver_arrival time ;

(
! get the user input;

p tom p t_use r ;

' data transmission rate,Mbp secs;

! data transmission rate,Mbp secs;

data transmission rate,Mbp secs;

mean time between message arrivals ;

! get the stat:ion parameters;

if (num_typea stations = num_of_stations) then

begin

read_in put ("station_typea") ;

b_interrupt time := 0.0;

b_dma xfer rate := 0.0;

en d

else if (num_typea_stations = 0) then

beg in

read_in put ("station_typeb") ;

b_interrul3t_time := interrupt_t.tme;

b dma_xfer_rate := dma xfer rate;

interrupt time := 0.0;

dma_xfer, rate := 0.0;

end

else

beg in
read in put("station typeb");

i_-:

' save the interrupt time and dma xfer rate;

b_interrupt_time := interrupt_time;
b dma xfer rate := dma xfer rate_

end ,_

get type a input parameters_

read_in put ("sta tion_typea") ;

I ..- ._ 1 .--, _'I -_ .I-,_ -I- -_,_ .

tau := get_tau;

! start the simulation;

,el 2(num of_stations,tau,prop_delay, interrupt_time,

data_rate,dma_xfer rate,aver_arrival_time,

max_frame size, aver_msg size,b_interrupt_time,

b dma xfer_rate, num_typea stations)

begin

ref (message) cur_message; ' test variable;

long real sim start time; ' starting time for simulation;

long real sim end time; ' ending time for simulation;

in teger i ;

%INCLUDE print data.sire

' assign the start time;

sire_start_time := time;

end ;

end

' check for successful messages;

while (collectionq.total_message_success <

MIN_NUM PER STATION * num_of stations) do

beg in

hold (10) ;

end;

assign the end time;

sim end_time := time;

collect the data;

collectionq.get station_data;

get the network throughput;

collectionq.get_network data(sire_start time,

sim end time);

print_data ;

print_data;

I .
- .q

' integer proc:eclure get_hum_of_stations;

!

i .
• .q

I .
• .,I

I

| .
- .q

!

• ..i

I .

i i,
• ,i

I .
• t!

I .
• q

I ,*

| u
• :!

called by: networl,._;

retur'rls the number of stations;

g].obals used: none;

actions: queries the user for number of stations;

!** ;

integer procedure get_num of stations;

begin

get the number of stations;

outtext(" Please input ti_e number of stations");

outimage ;

get._num_of_stations ::= ini.nt;

SANTA CLARA UNIVERSITY

DEVL-LOPEDFOIRNASA/AMI-S

NCC2- 554

F'I-URFOI:_MAi4Cr; AI4AI_YSIS (]1" LAN

?**

procedure read_input

cal].ed by: n e two r b:.

calls:

a c t i c:,r'_:

I1017 e

reads the data for stations

opens and closes the input file

variables used: data_rate,
interrupt time,

aver_msg size,

max frame size,

aver_arrival_time

_ prop.._delay
(

** ;

procedure read_inpLtt(input file);

"text in put_file;

beg in

ref(infile) in file;

' open the input file;

in file :- new infile(input_file);

in_file.open (blanks(80)) ;

' get station data;

data rate := in file.inreal; in_file.inimage;

interrupt_time := in.file.inreal; in_file.inimage;

dma_xfer_rate := in_file.inreal; in_file.inimage;

aver arrival_time := in_file.inreall in_file.inimage;

prop delay := in file.inreal; in file.inimagel

max_frame_size := in file.inint; in_file.inimage;

aver_msg size := in .file.inintl in_file.inlmage;

, c:lose the file;

in file.close;

E_ I;
_"i"

ca]led by: network;

r eturr_s the number of stations;

globals usecl: none;

actions: queries the user for number of s t a t :i.on s ;

!** ;

procedure prompt user;

beg in

integer response;

' get the number of stations;

outtext("

out :Lmag e ;

out imag e ;

Please input the number

hum_of stations := inint;

of stations")

out te x t ("

ou t imag e ;

ou timage ;

out te x t ("

outimage ;

outimage;

ou t tex t ("

outimage ;

out text ("

outimage ;

outtext ("

outlmage ;

outtext ("

outimage;

oui;tex t ("

outimage ;

ou t i mag e ;

Please (:hoose station

interrupt time

dma transfer rate

maximum frame size

average interarrival

average message size

configuration") ;

TYF'E A

t i me

1.0

40.0

1500

0.000004

5000

r
L

ou ttex t (

ou timage ;

outtext("

ou t i mage ;

outtext("

outimage ;

outtext("

out imag e ;

"PLEASE ENTER CHOICE") ;

TYF'E A I");

TYPE B 2")

MIXTURE 3") :

' get the response;

response := inint:

TYPE B") ;

0.5");

80.0");

1500");

0.000004");

5000");

]
!
|
!
I

!

(I;

if (response-- I) then

beg in

num__typea.stations ::: num of stations;
end

else if (response = 2) then

beg in

num_typea stations := 0;
end

else

beg in

wants a combination of types;

' get the number of type A station s_

outtext(" Please input the number of TYPE A stations");
out imag e ;

out i mag e ;

ilum_typea..s'_.a'kions ..= inirlt;

end;

t make sure we got an o.k. number;

if (unum_typea_stations > num,_of_stations) tlnen
beg :Ln

num typea stations := hum_of_stations;
end

else if (num_typea_stations < 0) then

beg :i.n

num typea_stations :-- 0;
end ;

l SANTA CL.ARAUNIVERSITY
l

DEVEL.OF'IED F'-(]IRNASA/AMES

I-ICC,:.- _._54

I:'IERF:OIRI_AI'ICEANALYSIS OF" I._AN

!**

procedure print, data

c:alled by:

calls:

action :

variables used:

network

n o n e

prints the clata
and networks

opens and closes

co]. lection_queue

for _.vtations

the oui:put file

variables

ref(outfile) out_file;

o pen

out_fi

ou t_f i

the output file:

le :- new outfile("output");

le.open (blanks(80)) :

prin

out__fi

out fi

out_fi

out_fi

out fi

ou t_f i

t station data;

le.outtext("station # ");

le.outtext(" throughput

le.outtext("aver delay / frame

le.outtext("success ");

le.outtext("reject ");

le.outimage;

");

");

for i

beg in

:= I step I until, num of_stations do

out. file.outint(i,5);

out_file.outtex t(" ") ;

out fi

out .fi
out fi

out fi

oul: fi

o u t...f i

out_fi

le.outreal (collectioncl. throughput(i), I0,20) ;

le.outtext(" ") ;

le.outreal (collectionq.aver_delay_per_frame(i), 10,20) ;

le.outtext(....) ;

le.outint(collectionc l.message success(i),5);

le.outint(collectionq.message_not_sent(i) ,'_) ;

le.outimage;

end ;

print the network characteristics;

out_file.outtext(" network_throLLghl]ut = ");

out_file.outreal(collectionq.network throughput,10,20)

e n cl ;

out fil.e.outte×t(" aver-_delay_per_frame = ");

out-jfile.outreal(¢-'ol.l.ectionq-netw°rk aver delay, 10,20) ;

out file.outimage;

out f:ile.outtext(" simulation time ") ;

out_file.outreal((sim end_time - sire start time),10,20);

out_file.outimage;

' close the file;

out_file, close;

!

I .
• n

I

i .
•

I

I

I

I
•

I

I .
•

i ,,
• t!

i u
" 5

called by: network;

returns tau;

g].c)bals usecl: ;

long real max. net leng'['.l_;

long real prop_delay;

ac:tions: ca].culates tau;

].ong real max_net_length;

! ass'Lgn variables;

max net length := 2 '%" ' max length of networl,=.;

get_tau := max_net_length * prop delay;

end ;

t

dI-AD CI_ASS collection_queue

defines the queue used to collect data

called by: level_2.sim - allocates co].lection queue

tx_tcp.sim - puts messages into queue

cal Is : none

actions: defines collection queue

initializes collection queue variables

*** ;

HEAD CL.ASS collection_gueue;

BEGIN

inLeger array tcrtal_num of_bytes(l:num_.of_.stations);
' total num._of data bytes;

integer array total_num of messages(l: num of stations);

' total rum of data messages;

integer array total_num of_frames(1 :num of_stations);

' total inure_of frames sent;

integer array message_success(l:num_of stations);

! ' number of messages successfully
received ;

integer array message_not_sent(l:Inum_of statio|ns);
' number of messages not sent;

long real array total_tlnrough time(l: inure of_stations) ;
' total time traveling through;

long real array tlnrouglnpt.vt(1.:num of stations);
' total # bytes / total time ;

long real array aver_delay_per_frame(l:num_of_stations);
' total time per message / total # frames ;

n e two r k. t Inroug Input ;

networkaverdelay;

total message_success;

long real

long real

:[integer

irYteger i;

•%'IIqC.L_UDE col lect_data, sire

:::INCLUDE get_station data.sire

.'.'INCLUDE get_networl< data.sire

' main body;
' initialize variables;

for i:= 1 step I until num_of_stations do

beg :i.n
total_num_of_bytes(i) := O;

total_hum_of_messages(i) := O;

total_num_of_frames(i) := O;

message_success(i) := O;

total_through_time(i) := 0.0;

througlnput(i) := 0.0;

aver_delay_per frame(i):= 0.0;

end ;

network_throughput := 0.O;
,_4-,.,_I.. ,4_1 ,_, .-- 6 /%-

total_message success := O;

END;
i

(

\....

I u

int.eger procedure get_/frames_per_message;

!

I .
• .,s

I

I =

I

I

I •

i DI
• !!

] ii

I ,,

I
• !1

I N

I

cal].ed by: collect_data;

returns the number of frames per message;

g].oba].s used: message.bytes;

ac:tions: ca]oculates frames per message;

!** ;

integer procedure get frames per_message(num of bytes);

:i.nteger num_.of_bytes;

beg in

integer bytes remaining;

integer hum_of frames;

l
\

end ;

' in:Lt:i.alize variables;

bytes remaining := num_of_bytes;

hum_of frames := 0_

while(bytes_remaining > 0) do

beg i n
' increment frame count;

hum of frames := mum of frames + I;

end ;

' decrement by'tes remaining;

bytes_remaining := bytes remaining -

BYTES_PER_FRAME ;

get_frames_per_message := num of_frames:

!

I •
• .q

l

I u
•

!

l

I

I

l

I

! it
• .,!

I

I

I

l

I

I

i |w
• ._

I N
•

I .
•

| lw
•

I .
• q

i ig
•

I .
• .q

callecl by: co].lection queue ;

collects station clata for" messages;

g].oba].s used: ;

messag e. c:tea te t ;i.me ;

messag e. d one t ime ;

messag e. to ta].t ;Lme ;

message, re! ectecl ;

dataunit, bytes ;

actions: collects clata statistics for messages;

sets msg.time per message;

c:ollects time per _vtat.ton;

collects frames per stat:Lon;

collects the # of useful bytes (data bytes);

per station ;

(** ;
p, ocedure col. lect data(cur message);

ref (message) cur_message; _ current message examined;

beg in
% I NCL..UDE g e t_f tames_ pe r_.messag e. s i m

,'.."INCLUDE in c_messag e_ court t. s im

! did we get a message;

if (cur_message :=/= none) then

beg i n

! do we have a data message;

t if so, collect data;

if (cur_message.type = DATA) then

beg in
J was this a successful transmission;

if (cur message.donet.tme ..':]:.'.0,0) then

beg in

if (not cur_message.rejected) then

beg in

collect data;

! increment the message count;

inc. message_count(cur message.source_addr);

' get the time it took to send the message;

cur message, time per_message :=

cur message.donetime -

cur message.createtime;

add it to sending station time;

total_through time(cur message.source addr) :=

total_through time(cur_message.source_addr) +

cur message, time_per_message ;

r

increment "the number o'f messages;

total_num of messages(cur_message.source addr) :=

total, num of messages(cur_message.source.addr)

+ I;

' collect tlne number o'f bytes;

total_num of by'_es(cur message.source acldr) :=

total num of bytes(cur_message.source.addr) +

cu r_messag e. bytes ;

get hum of frames per message;

total_num of frames(cu r :message.source_adclr):=

total_hum of frames(cur message.source, addr) +

get_frames per message(cur_message.bytes);

end

el se

beg i n

end ;

I;

en c'l;

end ;

end ;

J take the message out of "the clueue ;

cur._messag e. ou t ;

outtext(" Error in get_clara, msg is NULL pointer")_

outimage

I m
°ff

procedure inc: message count;

I

!
•

I

I H
• q

I

I m
•

I

c:alled by: collect_data;

returln_:i rlone;

g].oba].s used: message success;

| w
° .q

I N
• q

| ii
• q

! w
• ff

• n

act:i.ons: increments the number of successful, messages

per station, l'f the nL_mber of messages per station

is less than MIN NUM F'[:R STATIOIq, then the total

number of messages per network is incremented.
For the simulation to be successful, in

data collection, every station must have a guaranteed

nl:i.r'Dimunthroughput.;

!** ;

procedure in¢ message, count(id);

integer id;

l_eg in

(
!increment the number of station messages;

message success(id) := message_success(id) + i;

end ;

shoulcl we increment the net success messages?;

if (message._success(id) <= I_IN_NUM_F'ER STATTON) tlnen

total_message_success ::= total_message_success + I;

\

| m
. .q

!

- o

I

I A

!

i .
- .,I

!

I

|

|

I

I

| ,,

!

I

i

procedure get station_data;

cal].ecl by: networl,:. (call to simulation);

c:ollects station data for me<'._.,age-,';

globals used: ;

to t a I._t im e ;

total throug h time;

total hum of_l)y'l:es;

total_.r_um of messages;

dataunit, bytes;

actions: collec:ts data statist:i.c:s for messages;

collects time per station;

collects the # of useful bytes (clara bytes);

per station ;

integer i ;

w loop through the stations_

for i:= 1 step i until num_of_stations do

beg in
!check for zero divide;

if (total._tlnrough_time(i) <> 0.0) then

beg in
| calculate the throughput for this station;

throughput(i) := total num_of bytes(i) /

total through_time(i) ;

end ;

end ;

en (-I ;

| calculate average delay per frame for this sta'l:ior_;

aver_cle].ay_per_frame(i) := total_through time(i) /

total num o'f_frames(i)

!

•

I

•

I

I

!

I
• ,_

I

!

I

I
•

| JJ

I
•

I
• .e

I m

I .

proc:eclure get network clara;

callecl by: r_etworl< (c:al], to simulai-:i.on);

collects stai'ion data for messages;

globa].s used: ;

n e two r I-.'.._t h roug h put'. ;
calc'ulates network time from sire .end - sim_start_

actions: collects clata s'tatistics for nei.work;

¢:al¢;ulates througlTput per networl--.;

ca].c:ulatc-:s averacje packet de].ay per network;

?** ;

procedure get network dai'a(sim start_time, sire_end time);

long real sire start_time; ! start:ing time of simulation;

long real sim_end..time; _ ending time of simulation;

l-)egin

! collection variables;

(integer net_total num_of l)ytes; ? total hum_of data bytes;
long real. net_tota], through_time;

long real. net..total aver_delay;

long tea]. throughput ;

integer i;

initialize variables;

,net_ total_through_time:= sire_end_time - sire_start_time;

net tota]._num of_bytes:= O;

throughput := 0.0;

net total_.aver_de].ay := 0.0;

' loop through the station collection queue;

for i := i step I. until num_of_stations do

beg i n

! collect the number of bytes;

net total num_of_bytes := net_total ,hum_of_bytes +

total num of_bytes(i);

en d ;

! colle¢-t the average delay per frame;

net total_aver_delay := net total_aver_delay +

avei- delay.._per frame(i);

I

t calc:u].ai'.e the throughput for this network;

if (

beg i n

end ;

net..total through_time -:::::.'-0.0) then

network_throughput := net total num of bytes /

ne t_ total...t hroug h_ time

c:a].culate mean delay per frame;

end ;

beg .'i.n

end ;

network aver delay := net_total, aver_clelay /

num of_stations ;

i

SANTA CLARA UNIVERSITY

DEVIZI_(]I::'EDI"OR I'IASA/AMIZS

I'IC C 2- 554

F'IZI_I='ORMAI'ICEANAI-YSIS 01= I...AI'I

! TX HOST- transmitter host

' STATES: Not Applicable

,

' Act:i.ons: Use stat:i.on statistics to generate the arrival and lengths ;

' of new messages. The messages are put into a hos't message ;

' queue and the corresponding TCF' layer is notified (activated) ;

' "to allow action if its state/buffer permits. !;

'

' Globals Used: Uthe random seed number used as input to all random ;

' number generations. ;

' message, count - unique id numbers for the messages, for ;

' tracking and clebugging primarily. ;
I H i s to r'y

I/I 1/89 mhal I

(1/19/89 mhall

change random number generator

•from randint to negexp

2/17/89 mhall

put a c:heck for

MAX_MESSAGE COUNT before

creating message, keep track of

rejected attempts when queue is

fu].1

changed code to use

aver_msg_si ze

host CLASS tx._host;

BEGIN

long real arrival_time;

integer messagestatus;

' time until arrival;

procedure generate_messages;

begin

' generate arrival of a message

arrival time := negexp(aver_arrival_time, u);

hold(arrival_time); ! no action until message arrival time ;

' can we generate another message;

if (msg_.queue.cardinal < MAX_HOST.MESSAGE COUNT) then

beg i n

' create and initialize -the new message

host msg :- new message;

host_msg.createtime:= TIME;

host msg.id := msg._count;

' this parameter is used primarily to allow ;

' for tracking of messages, a unique id#

(
beg i n

' assign source and destination adclress;

l'_o_vt..msg.source_addr := id ;

t gel- a destination other than itself;

ho_vt_msg.dest_addr := randint(i, num of_statiorls:, u);

while Inost msg.dest.addr = id do

b e g :i.n
host_msg.dest addr :=

randint(I, num of. stations, u);

end ;

host.msg.type :=: DATA;

get a size for the message;

host_msg.bytes := randint(minl'_ytes, maxbytes, u);

host_msg.bytes := aver msg...size;

end ;

end

e I se

beg in

end ;

' into the message queue;

Inos t_msg. In to (msg_q ueue) ;

keep track of the ones that don't get in;

collectionq.message.._not sent(id) :=

collectionq.message_not_sent(id) + 1;

this layer doesn't passivate on in:i.tia].izatic._r_;

msg_queue :- new message_queue("tx host");

encl ;

END ;

set characteristics of station message;

!if (id <= (num_of stations/2)) then

beg i n

m:Lnbytes := 50;

' max bytes := 150;

!end else begin

minbytes := 8000;

' maxbytes := i0000;

!end ;

while TRUE do

beg in

' generate messages forever ;

' generate messages;

g ene rate messag es ;

i'f stx_tcp(id).IDLE then

beg in
activate stx tcp(id);

end ;

hold(interrupt time);

end --o f--w h i ie ;

I SANTA CLARA UNIVERSITY

DEVH...OF'Ii'_D FOR I'IASA/AMES

NC,C,,:.- z_z_4

F'I.:_'Fd--OI'*d_AI_ICE ANAI_YSIS OF L_AI'-I

J RX_HOST - receiver host

STATES: FREE, RECEIVING

Actions: Receive a completed message from the TCF' layer. Delay to ;

' simulate the DMA transfer of data. Reset to be ready to ;

! receive the next message.

l

host CI,_ASS rx_host;
BEGIN

pr'ocedure dma.transfer(no bytes):
I

! proceclure dma transfer

l

! This procedure executes a hold to simulate a dma transfer.;

! It used the number of bytes passed to it to determine the ;

i _ctual lenght of the hold.

! 81obals: dma xfer rate

l

integer no .bytes;

beg i n

hold(no_bytes * 8 /dma_xfer_rate);

end ;

booiean procedure receive(recvmsg);

REF(message) recvmsg :

beg i n

re cvmsg. INTO (msg_cl ueue) ;

dma...transfer (recvmsg, bytes) ;

receive := TRUE;

end ;

< .;,.

beg i n RX_HOST MAIN ;

' initialize the rx_host entity

msg_.queue :- new message queue("rx_host");

l_ost_msg :- new message;

' passivate after creation:

passivate ;

while TRUE do

' loop until the simulation ends

beg in

if (msg_.queue. EMPTY) then

' no aci'ion required, do nothing

end;
end;

end;
END++of++rx_host ;

passivate;
end
else
beg in
' message queue not empty, begin processing ;

state := RECEIVING;

' receive a message from TCP layer

host_msg :- msg_queue. SUC;

if (host msg =/= NONE) then

' NONE test to avoid runtime errors ;

begin
' simulate processing time

hold(interrupt time);

state := FREE;

' remove the message from the queue

host_msg. OUT ;

end;

' discard the message

host_msg :- NONE;

' SANTA CLARA UNIVERSITY

DEVELOPEDFOR NASA/AMES

NCC2-554

F:'FRFORMANCEANALYSIS OF LAN

! TX_TCF'.SIM - used as include file in TCF'.SIM

!

TX TCP -

STATES :

Actions:

transmitter tcp

FREE, SENDING

Fetch message from host message queue, packetize,

add to buffer, send the message.

Send acknowledgments, and piggybacked data/ack frames

tcp CLASS tx_tcp;
BEG I N

REF(buffer) ackq;

REF(message queue) host msg_queue;

INTEGER re;

BOOLEAN ack to send, piggyback; ' Flags used to determine the;

' next action within the main;

loop of the tcp transmitter;

procedure dma_transfer(no_bytes) ;
I

! procedure dma_transfer
,

! This procedure executes a hold to simulate a dma transfer.

! It used the number of bytes passed to it to determine the ;

! actual lenght of the hold.

,

! Globals: dma_xfer rate

t q

integer no_bytes;

begin

hold(no_bytes * 8 /dma_xfer rate)_

end;

procedure packetize(msg)_

REF(message) msg;
!

' This procedure divides the message referenced by MSG into frames.

' The frames are put into the top buffer by the netservice level

' procedure RECEIVE. The final frame is marked by setting the FIN bit. ;

' This procedure is called only after space within the buffer has been ;

' reserved for tlne entire message size. A partial message will not be ;

' packetized.

beg i n

REF(frameunit) tcpframe ;

integer reap, msg_size;

begin
temp := msg.bytes;
msg size := max frame_size;

' divide the message into frames

while temp > 0 do
begin ' copy info from message to frame;

tc:_frame :- new frameunit;
tc._frame.id := msg.id;
tc_frame.bytes := msg_size;
tc:)frame.dest_addr := msg.dest addr;
to,frame.source addr := msg.source addr;
tc._frame.type := DATA;
tc_frame.seqnum := msg_size * i;
tc_frame.msgptr :- msg;
if tcpframe.seqnum >= msg.bytes then
begin ' last frame in the message ;

tcpframe.fin := True; ' set the l=-inished bit
tcpframe.bytes :=tempi
tcpframe.seqnum := msg.bytes;
i'f (tcpframe.bytes < 65) then
begin ' minimum frame size is 65 bytes;

adjust bytes & seqnum
tcpframe.bytes := 65;
tcpframe.seqnum := msg.bytes + (65 - temp);

end ;
buf.msgtail:-tcpframe; ! set pointer to end of message ;

end ;
temp := temp - msg_size; ' calculate bytes left in message;
return code := receive(tcpframe); ! call routine to pu'l:, frame;

' into transmittor bLrffer ;

i := i + i; ' increment frame counter ;

end ;

end ;

end--of--packeti ze;

procedure ack_message(ackframe);

REF(frameunit) ackframe;

ack_message(ackframe)

processes the receipt of an acknowledgement

- updates the window

- removes frames from buffer when last frame acknowledged

- sets donetime of message

assumptions:

- one message in the buffer at a given time

beg in

REF(frameunit) tempframe ;

REF (message) msgptr ;

if win.state <> EMPTY then

beg in

tempframe :- win.front;

! if the window is empty, any ack that ;

received will be ignored

! starting at the front o'f the window, ;

search the frames in the window for ;

, frames "that have a seqnum less than ;

' or equal to the ack_um, remove those ;

' frames from the window.

while tempframe=/=NONE

and tempframe.dest addr=ackframe.source_addr

and tempframe, seqnum<=ackframe.acknum do

kill_timer(tempframe); ! cancel the timer for the acked frame;
' adjust the window size

win.outsize := win.cursize- tempframe.bytes;
if 'tempframe.fiin then ! when the last frame in message

begin ' remove the message from bcvffer ;

msgptr :- tempframe.msgptr;

win.front :- tempframe. SUC;

if (outofbuf(tempframe.id) = OK) °then

begin ' Mark the message with current time ;

' indicating the time the message

J acknowledgement was received. Call ;

' for data collection.

if (set_donetime(msgptr) = OK) then

beg in

' get the data from this successful message;

collectionq, collect_data(msgptr) ;

end ;

end ;
if win.front==NONE then

beg i n

win. reset_window ;

goto Break;

end else begin

win.state := NENF;

tempframe :- win.front;

goto Break;

end ;

end else begin

win.front -- tempframe. SUC;

if win.front==NONE then

beg in

win. reset_window;

goto Break;

end ;

tempframe :- win.front;

end ;

end ;
Break: ' break out of while loop, incase pointer is NULL.;

end ;

end--of--ack;

procedure copyframe(source, dest);

REF(frameunit) source, dest;
!

' This procedure makes a copy of the frame being sent, since SIMULA

' will not allow a given I_ink class object to exist in more than one ;

' set (ie. a frame cannot be in more than one buffer at any given time).;

' To allow the frame to stay in the transmittor's buffer until it is ;

' acknowledged, a copy of the frame must be sent.

!

begin

dest.id := source.id;

dest.bytes := source.bytes;

dest.dest_addr := source.dest_addr;

dest.source addr := source.source_addr;

dest.type := source, type;

dest.seqnum := source.seqnum;

dest.ack_um := source.ack_um;

dest.fin := source.fin

dest.msgptr :- source.msgptr;

end

boolean procedure transmit(frame);

REF(frameunit) frame;
!

' This procedure copies the "frame to be sent and calls the IP RECEIVE ;

' procedure. If IF' receives the frame, activate the IF' entity.

' Returns: TRUE - frame received by IF'

' FALSE - frame not received by IF'

beg in

REF (frameunit) sendframe ;

senclframe :- new frameunit; ' create new frame_unit template to send;

COl)Yframe(frame, sendframe); ! copy info from old frame to new copy ;

if (stx_ip(id).receive(sendframe)) then

beg in

transmit := TRUE;

activate stx ip(id);

end else begin

transmit := FALSE;

end ;

en d--of-- t ran smi t ;

' frame received by IF', its on its way ;

' IP has sometlning to do, so wake it up;

' the frame couldn't be sent yet

REF (timeou t_un i t) procedure find_timeou t ;

This procedure searches tlne timeout queue to find tlne frame that

timed out, ie) the frame in which the FRAME_TIMED OUT flag is set.

Returns: reference to the first timeout_unit found which meets the

condition FRAME_TIMED_OUT, otherwise NONE.

beg in

REF(timeout_unit) current, next;

boolean found;

find_timeout :- NONE;

found := FALSE;

current ;-timeoutq.FIRST;
while (not found) do

beg in

' flag to indicate if timeout was founcl ;

' start at the beginning of the tirneoutq;

if (current =/= NONE) then ' search until end of queue ;

begin

if (current.status = FRAME TIMED OUT) then

begin ' found a timed out frame ;

find timeout :- current;

found := TRUE;

timeout count := timeout_count -I;

end else begin ' didn't find one, get the next timeout ;

current :- current.SUC;

end ;

end else begin ' have searched the entire queue :

found := TRUE_ ' break out of the loop ;

timed_out := FALSE!

timeout_count := timeout_count -I;

end

end ;

if (timeout_count = O) then timed_out := FALSE;

end ;

procedure update_buffer;
I

This procedure updales the necessary buffer pointers after a frame
is transmitted.

begin

lastsent :- frame;

buf.current :- (buf.current).SUC;

end--update_buffer;

boolean procedure receive_ack(ackframe);

REF(frameunit) ackframe;
I

This procedure receives an acknowledge frame for transmission from

the TCP Receiver. Comparisons are made to determine:

- if the frame is to be piggybacked

- if an previous ACK for the same message exists and

should be updated to reflect the current status of

the message

- if this ACK should be added to tlne ackJnowledgement

queue

Returns: TRUE if the acknowledgment is successfully handled

FALSE if there is an error in the processing

begin

REF(frameunit) tempframe;

boolean set_piggyback;

set_piggyback := FALSE;

if (lastsent =/= NONE) then

begin

tempframe :- lastsent.SUC;

end else begin

tempframe :- NONE;

end;

' flag to indicate if piggyback

' option was used

' initialize flag to indicate not used;

' NONE test to avoid runtime error ;

end ;

end ;

if (not set_piggyback) then

beg in

if (ackq.EMPTY) then

beg in

ackframe. INTO(ackq) ;

end else begin

tempframe :- ackq.SUC;

' if ack not already piggybacked

no ack exist in the ACKQ

' put the new ace into the ack queue ;

otherwise check the aces in the ;

' queue to see if updating an

' existing ace is appropriate

' get the first entry in the ACKQ

while (tempframe =/= NOblE) and (ackframe=/= NONE) do

beg in

if (tempframe.id=ackframe.id) and

(tempframe.ack_um < ackframe.acR_um) then

!check first packet for matching destination

!address - if matcln found then piggyback the ack ;

if (tempframe =/= NONE) then

beg in

if tempframe.dest addr = ack_rame.dest addr then

begin

piggyback := TRUE; ' set flag to show ack piggybacked ;

set_piggyback := TRUE;

tempframe.ack := TRUE; ' mark frame with acknowledgement info;

tempframe.acl,:num := ackframe.acknum;

' get the next packet to be sent

_ ":3

tempframe.acF.'_um -= acP.'frame.ac_._um;

ackframe :- NONE; _ ack frames combined, discard

w ack not used

end else begin _ matcln not f(3und, look at next ack

tempframe :- tempframe. SUC;

end ;

end ;

if (ackframe=/==NONE) then

beg in

ackframe. INTO(ackq) ;

end ;

end ;

end ;

ac:k_to_send := TRLJE;

receive...acl,:. := TRUE._

en d--of-- recei ve_a c k;

' no matching ACK found in ACKQ

put ack into the ack queue

procedure transmit failed(frameptr)

REF(frameuni t) frameptr ;
I

This procedure removes the entire message from the buffer and window

when transmission at the csmacd layer has failed.
I

Assumptions:

- only one message in the tranmission window at any given time
I

(

begin

(frameptr.msgptr).rejected := TRUE_

return_code := outofbuf(frameptr.id);

win. reset_window ;

end ;

' mark the message as rejected

' this into will be used later ;

' in the network statistics

REF (timeout_unit) proceclure create_timeout_ref(timeout_frame);

REF(frameunit) timeout_frame;
I

This procedure creates a timeout_unit for placement into the timeout

queue. It initializes the parameters of the timeout unit.

Returns: Reference to a new timeout frame

NOTE: TCP actually calculates the time_up value using a weighted

average of the actual times to send and receive an ACK.

This feature has not been implemented in this version.

beg in

REF(timeout_unit) timeout:

timeout :- new timeout unit;

timeout.layer :- stx_tcp(id);

timeout.frameptr :- timeout_frame_

timeout.time_up := 28000.0;

_:: : create_timeout_ref :- timeout;

create a new timeout template

initialize all of the variables ;

set reference to the entity

! set reference to specific frame ;

procedure kill_timer(timeout frame);

REF(frameunit) timeout frame;
I

This procedure searches the timeout queue for the reference to the

timeout q. If it is not found no action occurs. The search ends
with the first match found. There is only one timeout frame for any ;

frame transmitted, including any re-sends of the same frame

for whatever reason.

I:)e g in

REF(timeout_unit) current;

current :- timeoutq.FIRST; ' start at the front of the timeoutq

white (current=/=NONE) do ' search until end of timeoutq found

beg in

if (current.frameptr==timeout_frame) then

begin ' found timeout unit for ref frame

cancel(current.timerptr); ! cancel the timeout process

using the REF in the timeout unit

current. OUT; ' remove timeout_unit from queue

goto Break; ' exit the loop

en cl ;
current :- current.SUC;

end ;

Break:

end ;

' pointer to current position in clueue;

' frame match not found, get next unit;

proceclure start_timer(timeout)

REF (t imeou t_un i t) t imeou t ;
I

' This procedure creates a new process TCP_TIMER to be an independent ;

' process for the tracking of a timeout. If a timeout occurs the

' independent process will set the necessary flags using the REF's

' that are contained in the timeout unit. No references to the

' TCP_TIMER process exist, so that it will be discarded for garbage

' collection after it performs its given timeout function.
,

beg i n

REF(tcp_timer) new_tcp_timer;

new tcp_timer :- new tcp_timer; ! create a new timer process

timeout.timerptr :- new tcp_timer;

new tcp_timer.setup(timeout); _ initialize the timer process

timeout. INTO(timeoutq); ' put in q (keep a reference "to it) ;

activate new_tcp_timer; ' start the timer

end ;

begin

REF(frameunit) ackframe;

REF(message) msg;

Rl--F(timeout unit) timeoutptr;

boolean xmit_faiied;

' main program portion of tx_tcp;
, reference to ack frame used in MAIN;

i reference to a message used in MAIN;

reference "to a timeout used in MAIN;

' parameter used to determine the ;

status of attempted transmission ;

' if TRUE, the layer passivates

waiting for a state change in an ;

' adjacent layer to retry.

xmit failed := FALSE;

ackq :- new buffer;

msg :- new message;

buf.cursize := O;

buf.maxsize := 20480;

buf_space := buf.maxsize;

msg :- none;

lastsent 1- none;

piggyback := FALSE;

ack_to send := FALSE;

' Initialize the parameters

' set tcp buffer size for station ;

' initialize loop flags

passivate ;

' assign "the host message queue to local pointer;
host msg_queue :- stx host(id).msg_queue

x_!::!

while TRUE do ' DO FOREVERLOOP
begin

while (host_msg_queue.EMF'TY OR bur.state = FULL)

and not (ack_to_send OR timed out OR next msg) do

begin ' Nothing "to do - passivate

passivate;

end ;

if (acE_to.send OR timed_out OR next_msg) then

begin ' perform activity associated with

state := SENDING;

:L'f (acE_to_send) then

beg i n

if (piggyback) then

beg i n

piggyback := FALSE;

frame :- bur.current;

' flags in priority order

' First Priority- send piggyback ac:k

' Reset piggyback flag

end ;

if (frame =/= NONE) then ! NONE test to avoid runtime error ;

beg in

if (win.reserve_space(frame.bytes)) then

begin

if (transmit(frame)) then

begin _ Frame transmitted, update win & bl.vf ;

if (win.addto(frame)) then

begin ' Create timeout timer and start it ;

timeoutptr :- create_timeout tel(frame)

start_timer(timeoutptr) ;

upclate buffer

end else begin ' set flag to passivate at end of loop:

xmit_failed := TRUE_

end --add to ._

end else begin

xmit failed := TRUE;
end--transmi t

end else begin

xmit_failed := TRUE_

end-- reserve

end

end else begin

ack.frame :- acKq.FIRST; _ assign a reference to first ack;

if (ackframe =/= NONE) then ! NONE test to aviod runtime error;

beg i n

if (transmit(ackframe)) then ! send the acknowledgement ;

beg i n

ackframe. OUT; ' remove the ack from the queue .:

' if no more to send set flag

' acE_to_send to FALSE

if (ackq.EMPTY) then acE to_send := FALSE.:

end else begin

xmit_failed := TRUE;! Transmit returned FALSE, set the;

' the xmit_faiied flag so that the;

transmitter will passivate at

' end of this loop. It will be

' activated by IF' or HOST when

' either one's state changes.

if (ackq.EMF'TY) then ' verify there are no acks in queue;
begin ' reset tl_e ack...to_send flag ;

ack_to send := FALSE;
end ;

end ;
end ;

end else begin , ack to send is FALSE, check other f].ags ;
if (timed_out) then
begin

timeoutptr :- find timeout; ! find the timed out unit from q ;

if (timeoutptr =/= NONE) then

begin ' timeout unit rfound, resend by the frameptr;

if (transmit(timeoutptr-frameptr)) then

begin
-L-imeoutptr.status := SET; !start a new timer for frame;

star t_'timer (timeoutptr) ;

_-:Lmeout_count ;= timeoLIt EotLnt -- 1;

end else begin

xmit_failecl := TRUE; ' set flag to cause passivate ;

end ;

end ;

end ;

end else begin

timed_out := FALSE;

end ;

end else begin

' No timeout found, reset the flag ;

if (next_msg) then

beg i n
•frame :- bur.current;

if (frame =/= NONE) then

beg in

if (win.reserve_space(frame-bytes)) then

begin ' reserve space in the xmit window ;

if (transmit(frame)) then

begin ' transmit the frame to IF' ;

if (win.addto(frame)) then

begin ' officially add the frame to the win;
create/start the timer

update the buffer pointers

timeoutptr :- create_timeout tel(frame);

start timer(timeoutptr);

u pcla te_buffe r ;

if lastsent==buf.msgtail then

begin ' send only one message at a time ;

next msg := FALSE;

end ;

end else begin

xmit_failed := TRUE;

win. can cel. reserve_space (frame, bytes) ;

end ;

end else begin

xmit_failed := TRUE;

win. can cel reserve_space (frame, bytes) ;

end;

end else begin

xmit_failed := TRUE_

end ;

end else begin

next msg := FALSE;

end ;

end ;

if (xmit_failed) then , Xmit failed flag indicates that some
condition exists to attempt a transmit, and ;

t that the attempt failed. The transmitter ;
will passivate, waiting "for a change in
the conclitions, so that the next transmit ;

' might succeed. The loop will be executed ;
from the beginning after TX TCP is activated;

' so that whatever is highest priority will be;
clone first.

begin
xmit_failed := FALSE;
passivate ;

end ;
end else begin

if (not host_msg_queue. EMPTY) and (not buf._-vtate=FULL) then
beg in

state := RECEIVING;
msg :- host msg_queue.SUC;

add message to top buffer only if
there is room for the entire message

bur space indicates space remaining

if (reserve buffer_space(msg.bytes)) then

begin

msg.Out; ' Message is taken out of host queue and
added to the data collection queue.

msg. INTO(collectionq);

dma_transfer(msg.bytes)_ ' Hold for dma xfer of data bytes;

packetize(msg)_ ! Prepare the msg for sending, add to buffer ;
as individual frames to be transmitted.

end ;

state := FREE;

end ;

end ;

hold (interrupt_time) ;

end--of--whi le;

Hold for tcp processing time,needs refinement;

end--of--main ;

END++of++TCF'

i SANTA CLARA UNIVERSITY

DEVELOPEDFOR NASA/AMES

NCC2-554

F'EIRFOIRMANCEANALYSIS OF LAN

! RX_TCP.SIM - used as include file in TCP.SIM

RX_TCI=' - receiver top

STATES: I=REE, IRECEIVING

Actions: receive message "from ip, update the buffer_

send ACK in response to data message, update parameters in

response to CTRL, pass complete message up to host

NOTE: For this simulation it is assumed that there is room in the

receiver BUFFER for any arriving frame. The WINDOW size will

be checked for availability.

tcp CLASS rx top;

BEGIN

REF(message) msg;

''=(frameunit) summaryptr_ temp;

i EGER buf_rc_

procedure dma_transfer(no_bytes) ;
I

! procedure dma_transfer
i

! This procedure executes a hold to simulate a dma transfer.;

! It used the number of bytes passed to it to determine the ;

! actual lenght of the hold.

! Globals: dma_xfer_rate
J

integer no_bytes;

begin

hold(no bytes • 8 /dma_xfer_rate);

end;

integer procedure rx_receive(recvframe)_

REF(_rameunit) recvframe;
!

' This procedure receives a frame at the top level. It updates

' window and buffer sizes to reflect the size of the frame

received.
!

--L'

begin

boolean win_rc;

win_rc := FALSE;

return_code := FAILED;

if (win.maxsize "((win.outsize + recvframe.bytes)) then

begin ' set win.maxsize so never fails for WINDOW too small_

win.maxsize := win.cursize + recvframe.bytes;

if (win.reserve_space(recvframe-bytes)) then

begin ' reserve space in the window for the frame ;

if (buf.maxsize < (buf.cursize + recvframe.bytes)) then

begin ' set buf.maxsize so never fails for BUFFER too small;
buf.maxsize := buf.cursize + recvframe.bytes +1;

end ;

win_re := win.addio(recvframe);

bur_re := receive(recvframe);

encl else begin

win. can eel _reserve_space (recvf rame. bytes) ;

end ;

:Lf (win_re) and (bur_rE = OK) then

beg i n

return_code := OK;

end ;

if (bur.current == NONE) then

beg in
bur. Eur ten t :- re cvf rame ;

end ;

rx_receive := return_code;

end--of--rx-receive ;

procedure ctrl_message;

begin
I

' This procedure can be used as a starting point to implement the ;

' control messages of TCP.
,

end--of--ctri_

procedure reassemble_message;
I

.._---- m

This procedure creates a new message and copies all of the

information from the summary frame to the message preparing to

pass the message up to the host.

beg in

msg :- new message; ' create a new message and copy info

msg.id := summaryptr.id; ! from the Summary frame

msg.dest_addr := summaryptr.dest_addr;

msg. sou r ce_ad d r := summa ryp t r. sou r ce_ad d r ;

msg.bytes := summaryptr.bytes;

en d--of-- reassem b ie messag e ;

ref(frameunit) procedure get_summary_frame;
I

This procedure returns a frame pointer to the first frame

found with the same message id number (id). Since the

buffer is FIFO, the first frame reference will be the

considered the summary frame and will be updated with the

receipt of additional frames of the same message to reflect

the status of the message. Non-contiguous frame will

exist as separate units within the buffer.

_i::....begin

REF(frameunit) bufptr;

bufptr :- bur. FIRST;

while (bufptr =I= NONE) do

begin

if (frame.id=bufptr.id) then

' start at the beginning of buf_

' search to end of the buffer ;

' matching frame found, assign

get_summary_frame :- bufptr;
go to Break;

end else begin
bufptr :- bufptr. SUC;

end ;
encl ;

Break:

en cl--ge t_summa ry_f tame ;

' no match-check next buf entry;

integer procedure last_contiguous_byte;
I

This procedure will search through the buffer updating the summary

frame until no more updates are possible. The buffer pointers are

updated and combined frames are removed from the buffer.

Returns :

Integer value of the highest contiguous byte received

beg i n

integer last_byte;

boolean upclated;

RFF(frameunit) bufptr, tempptr;

last_byte := O; _ set last_byte in case first frame not received ;

updated := TRUE;

while (updated) do

begin ! search the list again after each update, until no more updates;

bufptr :- summaryptr.SUC; ! start search after the ;summary frame ;

updated :- FALSE;

while (bufptr =/= NONE) do ! search until the end of the buffer ;

beg in

if (summaryptr.id=bufptr.id) then

begin _ the frames have the same id number ;

if (summaryptr =/= bufptr) then

begin ' the pointers point to different frames;

if (bufptr.seqnum= (summaryptr.bytes+ bufptr.bytes)) then

begin ' contiguous frame found, combine them ;

summaryptr.seqnum := bufptr.seqnum;

summaryptr.bytes := summaryptr, bytes+bufptr, bytes;

last byte := summaryptr.bytes;

summaryptr.fin := bufptr.fin;

updated := TRUE;

end ;

end ;

end ;

if (updated) then

begin _ update the buffer pointers and remove the frame ;

' that was just combined with the summary frame

tempptr :- bufptr;

bufptr :- bufptr.SUC;

if (tempptr==buf.current) then

beg i n

bur. cur ten t :- (buf. cur ten t). PREV;

end ;

tempptr.OUT;

tempptr:- NONE;

end else begin

bufptr :- bufptr.SUC;

end ;

end--while;

end--while ;

begin
last_byte := summaryptr.bytes;

end ;
last contiguous_byte := last_byte;

end--of I as t- con t i guous- byte ;

procedure ack_owledge(aframe);
REF(frameunit) aframe;
I

This procedure creates an ackJlowlegement "for tile last contiguous

byte of the same message as the frame received. The ACK is put

into the acl,:_owledgement queue of tile transmitter.

(

_.:.::-

beg in

ref(frameunit) ackframe;

ackframe :- new frameunit_ ! create new frame for the ack

acl,:.frame.dest addr := aframe.source_addr; ! initialize the frame ;

ackframe.source, addr := aframe.dest_addr;

ack.frame.id := aframe.id;

ackframe.ack "= TRUE_

ackframe.type .'= ACK

ackframe.bytes:= 65; ' set ack bytes "to minimum packet size ;

ackframe.ack_um := last_contiguous_byte; ! "find the byte to ack

ackframe.setwindow := buf.maxsize- bur.outsize;

if not (stx_tcp(id).receive_ack(ackframe)) then

begin

end

activate stx_tcp(id)

end--of--ac_:J1 ow I edge ;

!******** RX_TCF MAIN ****************************;

begin

bur.outsize := O;

buf.maxsize := i0240; ' set tcp buffer size for station;

info set up in a file?;

passivate;

while TRUE do

begin
if buf.current =/= NONE then ! frame to receive in buffer, start ;

begin ' the receive process ;

state := RECEIVING;

frame :- buf.current;

control not implemented - 12/88 ;

if frame.type = CTRL then ctrl_message;

pass ack info to tx_tcp for updates;

if frame.ack then stx_tcp(id).ack_message(frame);
u receive data information

if frame.type = DATA then

begin
Find the summary frame for message,;

should return a pointer to the Ist ;

frame found for the same message• ;

Either a previously received frame ;

or the current frame if no previous;

' frame exists should be returned. ;

summaryptr :- get_summary_frame;

if (summaryptr==NONE) then ? debug message

begin

acknowledge(frame);
end;
' remove frame from receiver window ;
return_code := win.rxtcp_outof(frame);

if (buf.current=/=NONE) then
buf.current :- (buf.current).SUC;

if (summaryptr =/= NONE) then
beg i n
if (summaryptr.fin) and

(summaryptr. bytes=summaryptr, seqnum) then
beg i n

' last frame, message complete
reassemble message;

!send message to the host ;
while not (srx_host(id).receive(msg)) do
beg i n

if(sr×_host(id).idle) then

activate srx_host(id);

passivate ;

end ;

dma_transfer(msg.bytes);

activate srx_host(id);

!remove frames from buffer ;

return code := outofbuf(summaryptr.id);

end ;

end;
end

else

begin

' update buffer for CTRL or ACK frames ;

return code := win.rxtcp outof(frame);

temp :- frame;

if (buf.current=/=NONE) then

bur.current :- (buf.current).SUC_

/

if (temp=/=NONE) then

begin

bur_space := bur_space + temp.bytes;

temp.OUT;

temp :- NONE;

end;

end

else

begin

end ;

' no frame to receive, passivate

state := FREE;

activate srx_ip(id);

passivate;

end--of--if;

frame :- None;

' simulate processing time with hold

hold(interrupt_time);

end--of--main_

END++o'f++RXTCP;

, SANTA CLARA UNIVERSITY

DEVEL.OF'IEDFOR NASA/AMES

NCC2-554

F'ERI-ORI_ANCEANALYSIS OF I_AN

! IF'.SIM - used as include file in level 2.SIM

I

! RX_IP - IF' Receiver
I

! STATES: FREE, BUSY
! ACTIONS: Receives a frame pointer (REI-) from its station's

l rx_csmacd layer., calls the tcp receive function

, RX RECIEIVE to put the frame into rx_tcp's buffer.
!

ip CLASS rx_ip;

beg in

passivate ;

while TRUE do

begin
while frame==NONE do

beg i n

state := FREE._

initial startup wait state

' if no frame then do nothing

activate srx_csmacd(id); ! give dependent layer a
' chance to react to state change ;

passivate ;

end ;
if frame=/=NONE then ' frame receivecl from csmacd ;

begin

state := BUSY;

return code := FAILED; ! initialize value of return_code ;

while (return_code = FAILED) do

begin ' loop until TCP receives the frame ;

return_code := srx_tcp(id).rx_receive(frame);

reset the ip receiver parameters ;

if (return_code = OK) then

begin

activate srx_tcp(id);

frame :- NONE;

end;

if (return code = FAILED) then

begin

activate srx_tcp(id);

end;

end;

frame :- NONE;

state := FREE;

end;
hold(interrupt_time);

end;

end;

' simulate the processing time of IF';

\.. >:-" i

! TX_IF' - IF' Transmitter
l

! STATES: FREE, SENDING, READY

tx._tcp layer, calls the csmacd receive function
to put the frame into tx_csmacd's buffer.

CLASS tx_ip;
begin

procedure reset_tx_ip;
begin

frame :- NONE;

state := FREE;

end;

procedure transmit_failed(frameptr);

REF(frameunit) frameptr;

begin

stx_tcp(id).transmit_failed(frameptr);

end;

begin

passivate;

while TRUE do

beg in

while frame==NONE do

begin

passivate;

end;

state = FREE, no frame to send;

J state = READY, have frame

state set in receive procedure;

Attempt to pass frame to csmacd, if attempt fails then

' passivate.., will try again when activated by csmacd or

tcp. Will not succeed until csmacd actually receives the

frame.

while (not stx csmacd(id).receive(frame)) do

begin

passivate;

end;

state := SENDING;

if stx_csmacd(id).IDLE then

begin

activate stx_csmacd(id);

end;

reset_tx_ip;

activate stx_tcp(id);

hold(interrupt_time);

end--while--true--do;

end;

end++TX_IF';

frame passed to csmacd - reset;

Give TCP a chance to react to ;

' IF' state change.

simulate processing time

X-3!"

' SANTA CLARA UNIVERSITY

DE_JELQF'ED FOR NASA/AMES

NCCI- 5 _4

I u

I .
• 5

I

• ..i

I

I •

I

I

I

I

I

I

I .

I

I ..
•

I

I

!

I

I

(

process class tx_csmacd;

substructure of: class protocol

calls: (state routines);

csma cd _t x s_a cqui re_channel

csmacd txs attempt_tx ;

csmacd_txs_idle ;

csmacd txs wai t for re_tx

csmacd txs_disabled

returns: none

globals used: ;

loops on state and change_status.;

this indicates if a change of state has;

occurred.;

actions: mimicks the transmitter of the csmacd ;

csmacd class tx_csmacd;

begin

' attributes;

integer n;

long real

long real

' num of transmission tries;

tx_delay; !transmission delay;

total_delay; ' •total delay;

' state routines;

' cletermine if a transition will occur;

i return a boolea;] true if transition occurs;

! files that contain the state subroutines and specific procedures;

:-:INCLUDE csmacd_txs.sim

"-.'INCLUDE csmacd tx.sim

' main body_

begin

' initialize attributes;

n := O;

' loop forever;
while true do

begin

if ((not change_state) and
(not buffer_interrupt)) then

begin

end
else
begin

passivate;
change_state := true l

' reset the transition;

change_state := false;

i identify the state;

if (state = DISABLED) then

beg in

change_state :=

csmacd txs disabled
end

else if (state = WAIT_FOR_RE_TX) then

begin

change state :=

csmacd_txs wait_for_re_tx;

(

end

have we waited max triesl

if (not change_state) then

begin

reset the variables;

reset.tx_csmacdl

' wake up ip;

activate stx_ip(id)i

end I

else if (state = FREE) then

begin

change_state :=

csmacd_txs_idle ;

end

else if (state = ATTEMF'T_TX) then

begin

change_state :=

csmacd txs attempt_tx i

end

else if (state = ACQUIRE_CHANNEL) then

begin

get the frame to ;

send from the buffer;

frame :-

get_frame_from_buffer;

if we got the frame ;

send it on i

if(frame =/= none) then

begin

change_state :=

csma cd_t xs_acqui re_channel (frame) ::

(
end ;

end ;

end

if (change._state) then

beg i n
' calculate total delay;

total delay :=

prop delay + tx_delay;

' activate the csmacd_rx:

activate srx_csmacd(frame.clest_addr):

end

end ;

' reset the flag;

reset_tx_csmacd ;

' wake up ip layer;

activate stx_ip(id) _

end

else

beg i n

outtext(" ERROR IN IDENTIFYING C_TX STATE");

outint(state, 5) ;

outimage;

end

end ;

\:

I SANTA CLARA UNIVERSITY

DEVEI_OPEDFOR NASA/AMES

blr_r_-__55zl

I_ERI-OIRMANCEANAI_YSIS OF LAN

I w
• ,

I M

I

• .q

!

I *

•

!

I •

I

I n
• .q

I

I •
• ._

I

I

! w
• .q

boolean procedure csmacd_t×s_disabledl

beg in

boolean return_code; ! true if transition occurs;

long real jam_time; ' amount of time for jam;

procedure csmacd_txs_disabled ;

called by: process class tx_csmacd;

calls: csmacd_tx_end_j am ;

returns: true ; ! transition always occurs;

globals used: none ;

actions: holds for a jam period;

then calla end jam for a change of state;

return_code := true;

' assign delay time and hold for it;

jam_time := 2 * tau;

hold (jam_time);

! call end jam for transition state_

csma cd_ t x _en d_j am;

' always return true ,since there's always a transition;

csmacd_txs_disabled := return_code;

end ;

I •
• .q

I •
• ,

I

• ,

I

I •
• ,q

I

I u
•

I

I •

I

I
• .q

!** ;

boolean procedure csmacd_txs_wait_for_re_tx ;

procedure csmacd_txs wait for_re tx

called by: process class tx_csmacd;

calls: csmacd tx end_of delay;

returns: true if n <= 16, false otherwise;

globals used: checks the value of n declared in tx csmacd ;

actions: if n .'-...- 16, calls csmacd_tx_end_of_delay;

boolean return code;
integer max_tries;

max_tries := 16;

' max number of attempted tx;

' call the transition if n <= max_tries;

if (n <= max_tries) then

beg in

end

else

begin

return_code := csmacd_tx_end of_delay;

' return frame pointer to ip_

frame .'- get_frame.from buffer"

stx_ip(id), transmit..failed (frame)

return_code := false;

end

csmacd_txs_wait_for_re_.tx := return_code;

| •

I .

I

l -

[

I •
• ._

l

I .
. ..

I

I •

I

l

i •

I

I •

procedure csmacd_txs_idle ;

called by: process class tx_csmacd;

calls: csmacd_tx_attempt_send;

returns: true if transition occurs, false otherwise;

globals used: !

bur. s tate ;

actions: represents the idle state;

begin

boolean return_code;

' initialize return code;

return_code := false;

' is ti_ere a possible transition._

' if the buffer is full_tx_

' attempt to send;

' is there something in the buffer to send;

if (bur.state = FULL) then

beg i n

return_code := csmacd_tx_attempt_send;

end ;

csmacd_txs_idle := return_code_

end ;

| •
• .q

| .

! •

!

I .
• q

I

I

I =

I

I .
• ,q
I

I .
• q

I

I

I

I

I

!

I .
• .q

procedure csma cd_ t xs_attempt_tx

called by: process class tx_csmacd;

calls: csmacd_t×_end_of_col I ision_window ;

csmacd_t×_col I ision ._

returns: true if "transition occurs, false otherwise_

globals usecl: "taLl

actions: represents attempting to tramsmit state._

checks the channel variable to see if collision;

has occurred between attempt_tosend and now;

if not, holds for two tau total before checking;

to see if collision has occurred. This is the ;

collision window time;

**

boolean procedure csmacd txs attempt_tx;

begin

boolean return_code;

return code := true;

| can we proceed;

' hold before checking state variable;

hold (tau)

if (schannel_csmacd.csmacd_channel_state = 0) then

begin

| increment the access variable;

schannel_csmacd.csmacd channel_state :=

schannel_csmacd.csmacd_channel_state + 1_

' hold for the collision window;

hold(tau);

end

else

begin

' did we collide with another carrier;

if(schannel_csmacd.csmacd_channel_state

begin

csmacd tx collision;

end

else

begin

end ;

csmacd_tx_end_of_collision_window_

> I) then

' increment the access variable;

schannel_csmacd.csmacd_channel_state :=

schannel csmacd.csmacd_channel_state + 1_

hold (tau) ;

end

csmacd tx_collision;

csmacd_txs_attempt_tx :- return_code:

end ;

| •

• .q

!

I .

I

I ,.

I

I N

I

I •
• 5

I

i

] •

I

i

I =

procedure csmacd_txs acqui re channel

called by: process class tx_csmacd;

calls: csmacd tx_end_of ix_message;

returns: true if transition occurs, false otherwise_

globals used: :

tau ;

actions: represents the tramsmit state;

calculates tile tx_delay and the transmit_time;

!** ;

boolean procedure csmacd_txs_acquire_channel (send ing_frame) ;

ref(frameunit) sending_frame; ! frame to be sent;

beg in

long real transmit_time;

long real transmit_rate;

boolean return_c:ode ;

(return_code := false;

' calculate transmit time;

tx_delay := sending_frame.bytes * 8 / data_rate_

transmit_time :=tx_delay - 2 * taLL;

i'f (transmit_time < 0) then

transmit_time := 0.0;

hold (transmit time):

' is this the end of the transmission message;

return_code := csmacd_tx_end_of_tx_message(sending_frame) ;

csmacd_txs_acquire_channel := return_code;

end ;

t

, ::;

' SANTA CLARA UNIVERSITY

DEVELOPED FOR NASA/AMES

NCC2- o o4

| i
• .q

I .
• ..i

I

I .
• q

I

•

I

•

I

I •

I

I

I

I

I •

I

I

I

I

!

procedure csmacd_tx_end_j am;

called by- csmacd_txs_disabled ;

calls: none;

returns: none

globals used: ;
state := WAIT_FOR_RE_TX;

schannel csmacd.csmacd_channel_state: = ;

schannel_csmacd, csmacd_channel_state- 1 ;

actions: ends the jam;

transitions the transmitter to wait for re-tx.;

changes channel state to free by decrementing states;

checl,:s channel queue with last transmitter in jam_

procedure csmacd_tx_end_jam;

begin

' from disabled state;

' owns the transition from disabled to wait;

' for re-transmission;

u (jam over);

' reset state variables_

' transmitter waits for re_ix;

state := WAIT_FOR_RE_TX;

' decrement the channel;

schannel csmacd.csmacd_channel_state: =

schannel csmacd.csmacd_channel_state - i;

' was this the last transmitter in the jam? ;

if (schannel_csmacd.csmacd_channel_state = O) then

beg i n
' check to wake up channel queue;

csmacd_tx_check channel_queue;

| •

I

S

I

l

| •

I

I

I .
• ..,

l

I .

calls: none;

returns: ;
true if number of tries is less than sixteen;

false if max number of tries attempted;

globals used: ;
n number of transmission attempts;

actions: "transitions to the idle state;

**

boolean procedure csmacd_tx_end_of_delay;

begin

boolean return_code;

long real wait_time:

integer wait_max;

initialize variables;

return_code := true;

n := n + i;

' get a wait max value based on n;

if (n > I0) then

begin

wait max := 1023;

end

else

begin

end ;

wait_max := (2 ** n - 1) - 1;

' get the wait time;

wait_time := randint (O,wait_max,u);

hold (wait_time * tau).;

| reset state variable;

state := FREE;

check to see if we're over 16 attempts_

if(n > 16) then

begin

return_code := false;

end ;

csmacd_tx_end_of_delay := return_code;

end ;

!** ;

I •
• .m

I .
• .q

! procedure csmacd_tx_attempt_send ;
I •
• .m

: ! called by: csmacd_txs_idle I

I

I B
• .q

!

• .q

!

!

!

!

I

I .
• .q

I

!

!

! •

calls: none;

returns:

always true;

globals used: ;

state := ATTEMPT_T×;

schannel, csmacd, csmacd channel_state:= ;

schannel_csmacd.csmacd_channel_state + 1 ;

channel queue;

actions: try to gain control of the channel:

transitions the "transmitter from idle to attempt._tx,.;

if not possible,goes into channel queue;

boolean procedure csmacd tx_attempt_send;

begin

boolean return_code;

' from idle state;

' owns the transition from idleito ;

attemptimg to send;

' initial:i, ze variables;

return code := true;

(
' is the channel free;

' reset state variables.:

' can we get the channel;

if (schannel csmacd.csmacd_channel_state = FREE) then

begin

' we can get the channel;

state := ATTEMPT_TX;

end

else

begin

end_

' wait for the channel;

' no change of state,passivate in queue;

wait(schannel_csmacd.channel queue)!

end ;

' assign return value;

csmacd_tx_attempt_send := return_code;

!;
I.

' procedure csmacd_tx_end_of collision_window;

L

' called by: csmacd txs_attempt_tx ;

' calls: none;

' returns: none ;
I.

!

I .
• q

I

I

I .
• q

state := ACQUIRE CHANNEL;

actions: ends the collision window;

transitions the transmitter to end of collision window;

owns the transition from attempting to ;

transmit to acquiring channel;

!**;

procedure csmacd tx end_of_collision_window;

begin

! from attemptimg to transmit state;

reset state variables;

state := ACQUIRE_CHANNEL;

end ;

I

I .
• .q

I

I •

(
I--i
• ,q

!

I

!;
!

!**;
l=
•

•

! procedure csmacd_tx_collision_
!=
• 5

called by: csmacd_txs attempt tx ;

calls: none;

returns: none ;

globals used: ;

state := DISABLED;

actions: ends the jam;

' owns the transition from attempting to ;

' transmit to global collision_

' transitions the transmitter to disabled.;
I=
•

!**;

procedure csmacd_tx_collision;

begin

! from attemptimg to transmit state;

' reset state variables;

state := DISABLED;

end ;

|
• .e

I •
•

I

p

I
• .q

I

I •
• .q

I

I •
• .q

I

procedure csma cd_t x_end_of_Tx_f tame;

called by: csmacd_txs_acquire_channel ;

calls: none;

returns: true if frame received,false otherwise ;

globals used: ;

I

I

!

!

I

I .

schannel_csmacd.csmacd channel_state - 1;

actions: ends of transmission;

calls the rx csmacd receive routine ;

decrements the channel state variable;

clnecks the channel queue for entities waiting ._

for the queue;

• q

!** ;

boolean procedure csmacd tx end of tx_message(sending_frame);

ref(frameunit) sending_frame;

beg i n

boolean return_code;

return_code := true;

' from transmitting state;

' owns the transition from transmitting to ;

' idle;

' change the receiver" message pointer_

return code := srx_csmacd(sending frame.dest_addr).receive(frame) ;

decrement the channel variables;

schannel_csmacd.csmacd channel state: =

schannel_csmacd.csmacd_channel_state - I;

end

' do we have anybody in the channel queue;

csmacd tx_check_channel_queue_

' set the return code;

csmacd_tx_end_of_tx message := return_code;

|

1 i.
• p

!

I •

I

I •

l

I •
• .'i

I

l .

I

I ..
• ..i

l

I

I

|

I .

I =

procedure csmacd_tx_check_channel_queue;

called by: csmacd..tx_end_of_tx_message

calls: none;

returns: none ;

globals used:

schannel_csmacd.channel queue ;

actions: checks the channel queue to see if anybody ;

wai ring

takes any transmitters waiting out of the ;

queue and activates them;

!....**

I-Jcedure csmacd_tx check_channel_queue;

begin

ref(tx_csmacd) next_transmitter_

' wake up anybody in line for channel q

if(not (schannel_csmacd.channel_queue.empty)) then

beg in

end
end ;

beg in

end ;

next_transmitter :- schannel_csmacd.channel_queue-fir_v(;
next_transmitter-out ;
activate next_transmitter;

| w
• .q

I .
• .i

I

i =
•

I

I .
•
l

I

I g
•

I

I .
• ..i

!

I

I

I

I

l

I

procedure reset_tx_csmacd

called by: tx_csmacd

calls: reset;

clear_buffer;

returns: none;

globals used: ;

n := O;

tx delay := O;

total_delay := O;

change_state:= false;

clears the buffer;

actions: ;
resets the csmacd_tx variables;

!**;

procedure reset_t× csmacd;

begin
reset entity variabies_

reset;

' reset the tx_csmacd variables;

n := O;

tx_delay := O;

total delay := O;

change_state := false_

' clear time buffer;

clear_buffer ._

end;

procedure dma_transfer(no_bytes);
I

! procedure dma_transfer

! This procedure executes a hold to simulate a dma transfer.;

(" It used the number of bytes passed to it to determine the
'_ actual lenght of the hold.
i

! Globals: dma_xfer_rate
! .q

integer nobytes;

begin

hold(no_bytes * 8 /dma_xfer_rate)_

boolean procedure receive_
m

called by: csmacd_txs_idle,csmacd_rxs_idle .:

calls: none_

returns : ;

true if frame entered into buffer;

false otherwise _

m

globals used: ;

bur - current buffer;

buffer_interrupt - set when frame enters buffer;

q

actions: q

takes a frame and puts it into the buffer_

sets tlne buffer state to full_

sets buffer interrupt to true;

holds for dma xfer time;

** ;

)oolean procedure receive(in_frame);

ref (frameunit) in_frame;

beg i,n

boolean return_code_

return_code := false;

' if the buffer isn't full,put the frame in;

if (not (bur.state = FULL)) then

begin

' put the frame in the buffer ;

in_frame, into(buf) ;

' set the buffer state;

buf.state := FULL;

' set the buffer interrupt;

buffer_interrupt := true_

' hold for transfer time_

dma_transfer(in_frame.bytes);

return_code := true;

end ;

receive := return_code;

end

' SANTA CLARA UNIVERSITY

DEVELOI-"ED FOR NASA/AMES

5NCC,:- .5_4

| •

' process class rx_csmacd;
I .

' substructure of: class protocol;
I .

• .q

' calls: I

' csmacd_rxs._idle ;

' csmacd_rxs_receiving ;
I .
• .q

' returns: none i
, •
• .q

' globals used: I

' loops on the state and clnange status boolean

- ,_

' actions._- mimicks the receiver of "the csmacd ;

' activates rx_ip when appropriate;
I .
• .q

(csmacd class rx_csmacd
beg i n

' attributes_

long real rx_delay; •' in usecs_

' state routines;

' determine i_ a transition will occur;

' return a boolean true if transition occurs;

! _iles that contain the state subroutines and specific procedures;

NINCLUDE csmacd_rxs.sim

NINCLUDE csmacd_rx.sim

' main body;

begin

rx_delay := I0.0;

(

' initialize attributes:

' loop forever;
while true do

beg in

' do we check _or a transition

i_ ((not change_state) and

(not buffer_interrupt)) then

begin

passivate;

change_state := true;

(

end

end

end

e ise

begin

reset the transition;

change_state := false;

' identify the state;

if (state = FREE) then

beg i n

change_state :=

csmacd rxs idle ._

end

else if (state = RECEIVING) then

beg in

change_state :=

csmacd rxs_receiving

is the buffer full receiving;

if (clnange..state) then

beg i n

wake up the i p layer';

activate srx ip(id);

end

end

reset the variables;

reset rx_csmacd

else

beg in
outtext(" ERROR IN IDENTIFYING C_RX_STATE");

outint(state, 5) ;

outimage;

end ;

end ;

, SANTA CLARA UNIVERSITY

DEVELOPEDFOR NASA/AMES

NCC2-554

PERFORIMAIgCEANALYSIS OF LAN

I B
. q

I m
• .q

I

I =
• .e

I

I u
• ._

I

I •
• q

I

I •
• ,q

I

I •
• .q

I

I •

boolean procedure csmacd_rxs._idle;

begin

boolean return_code;

procedure csmacd_rxs_id le;

called by: process class rx_csmacd;

calls: csmacd_r×_frame ;

returns: true if transition occurs, false otherwise;

globals used: buf.state ;

actions: represents the idle state;

' initialize return code;

return_code := false;

is "tlnere a possible transition_

attempt to send!

if (

begin

end ;

bur.state = FULL) then

return code := csmacd_rx frame_

csmacd_rxs_idle := return_code;

end

**

I=

•

procedure csmacd_rxs_receiving
I=

called by: process class rx_csmacd_
|

I

I •
•

I

| •
• .q

I

I

I •

calls: csmaccl_rx_buffer_full;

returns: true if transition occurs, false otherwise;

globals used: none

actions: represents receiving state_
checks to see if the buffer's full;

end ;

boolean return_code;

return_code := false;

' check to see if we have a transition;

return_code := csmacd_rx_buffer_full;

' hold for a receiving time;

hold(rx delay);

csmacd_rxs receiving := return_code_

' SANTA CLARA UNIVERSITY

DEVELOPEDFOR NASA/AMES

NCC2-554

F'ERFORI_ANCE ANALYSIS OF LAN

**
I.
•

l.
•

!

I•
-

I

I.

!

I.

I

I.

!

Im
-

' actions: changes the state from idle to receiving ;

, owns the transition for teetering message;
I=
•

**

boolean procedure csmacd_rx_framel

begin
boolean return_code;

return_code := true;

procedure csmacd_rx frame;

called by: csmac:d_rxs_idle ;

calls: none;

returns: always true ;

globals used: none ;

' reset state variables;

state := RECEIVING;

' set the return value;

csmacd_rx._frame := return_code;

end ;

I -

I

! m
• ,_

!

! .
• _

!

! •

!

I

I

?;
!

I •

I

!

f

procedure csmacd_rx_buffer_ful i

called by: csmacd_rxs_receiving

calls: none;

returns: none ;

true i'f frame was sent to rx ip;

false otherwise;

globals used: frame (frame pointer) ;

actions: imitates the receiving state ;

owns the transition for teetering buffer full;

**

boolean procedure csmacd rx buffer_full;

begin
boolean return_code;

' initialize variables;

' get the next frame to send;

' or loop on the last one;

if (frame == none) then

beg in

•frame :- get_frame_from_buffer;
end ;

' if we got the sending frame, pass it up;
if (frame =/= none) then

beg in

if(srx ip(id).state = FREE) then-

beg in

en d

else

begin

end :

end

e]. se

begin

end

' set the frame pointer for the ip layer;

return_code := srx_ip(id).receive(frame) ;

return_code := false;

return_code := false;

' set the return value:

csmacd_rx_buffer_full := return_code;

| •

I .
• ._

' procedure reset_rx_csmacd
I .
• ._

' called by: rx_csmacd ;
! •
• .q

' calls: reset;

' clear_buffer;
! .

! returns= none;
I .
• .q

' globals used: ;

' change_state := false;

' clears the buffer;
; R
• ._

' actions: ;

' resets the rx_csmacd variables;
! .

procedure reset_rx_csmacd ;

beg i n

' reset entity variables;
reset;

' reset the rx_csmacd variables;

change_state := false;

' clear the buffer;
I _,,_.

end ;

_cedure dma_transfer(no_bytes);t

I

! procedure dma_transfer
,

! This procedure executes a hold to simulate a dma transfer.;

! It used the number of bytes passed to it to determine tlne ;

! actual lenght of the hold.
,

! Globals: dma_xfer_rate

integer no_bytes;

begin

hold(no_bytes * 8 /dma_xfer_rate);

end;

• .q

I .
• q

I

I .
• ,q

i

! .
• p

I

(
!

!

I .
• .q

!

I

I

I .
• q

boolean procedure receive;

called by: csmacd_txs_idle,csmacd_rxs_idle ;

calls: none;

returns: ;
true if frame entered into buffer;

false otherwise_

globals used: ;

bur - current buffer;

buffer_interrupt - set when frame enters buffer;

, actions: ;

' takes a frame and puts it into the buffer;

sets the buffer state to full;

' sets buffer_interrupt to true;

, holds for dma. xfer time;
I .
. ._

**

boolean procedure receive(in_frame);

ref(frameunit) in_frame;

begin

boolean return_code;

return_code := false;

' if the buffer isn't full,put the frame in;

if (not (buf.state = FULL)) then

begin

put the frame in the buffer ;

in frame.into(bur);

' set the buffer state:

bur.state := FUI_L;

' set the buffer interrupt;

buffer_interrupt := true;

end

' hold for transfer lime_
dma_transfer(in_frame.bytes)_

return code := true;

end

receive := re±urn_code_

i SANTA CLARA UNIVERSITY

DEVELOPED FOR NASA/AMES

process class channel_csmacd;

substructure of: class protocol_

calls: none;

re'l_urns: none ;

globals used: initializes channel variables ;

csmacd_channel_state:= O (FREE);

channel_queue :- new head;

actions: mimick.s the channel ;

in

' attributes_

integer csmacd channel_state_

ref (head) channel_queue;

end

' main body_

' initialize attributes;

begin

csmacd_channei_state:= O;

end ;

channel_queue :- new head;

- ._ ..

:[0.0 ' data rate;

1.0 ' interrupt ti.me;

40.0 ' dma_xfer_rate;

, 7000040 , aver., arrival time;

5.0 i prop delay;

1500 ' max frame size;

5000 _ aver msg_size;

10.0 ' data_.rate ;

0.5 _ interrupt._time;

80.0 _ dma xfer rate;

_000040 _ aver arrival time;

5,,0 ' prop_delay;

1500 _ max frame size;

5000 t aver msg_size;

_.vta t ion # throughput
1 6. 716818915&-O01

,_:.'_ 5. 179557857&-001

3 7. 37005136 5&-'-O0 :[

4 7. 934756301 ._._-00:I.

5 6. _-74,- ?,__87&'-O0 t

6 7 08449z._89.r'O01

"7 1. 832410092&-001

8 5. 897607711 &'-O01

9 7. 829448668&-00 l

10 1 04_. I, 7_,._.&-001

n e [:wo r I-.:._t h roug 11l:)tl t := I

aver de].ay_per_frame =

!s:Lmulation

aver delay I frame success rejec:t
:I.. 86 i.O00000&+O03 i.4 0

2.413333405&_-003 14 0

I. 6960533088,:+003 10 0

1. 575347689._._003 14 0

1. 9922560258r.eO03 12 0

1. 764168100_._003 I0 0

6. 82161. 7089&+003 "1.2 0

2. i 19503469&+003 16 0

1. 596536427&+003 16 0

I. 199089937&+004 14 0

.948454521&-001

3.383071488& 00_

time 3.387300000&+006

".-L:i:.

statior_ # throughput

I 5. 537486600&-001

2 7 ,,157506226&-. -001

3 8. 632726815&--00 :L

4 2. 485822573_-001

5 7.053833527&-001

6 6. 988605855&_. -001

7 7. 574594085&--001

8 7.150107464&-001

9 8. 180771125&--001

10 7. 873636565&--O01

n e two r" I,:. th rough put = ::L

aver delay_per frame =
s i mu i at i on

aver" delay / frame success reject

2.257341806&+003 20 0

1.746418320&+003 28 0

1. 447978273&+003 16 0

5. 028516571_e003 20 0

1,772086051&+003 I0 0

I.,788625694&+003 15 0

I. 650253447_e003 26 0

1. 748225473&+003 19 0

:L, 527973318&+003 .1.7 0

1. 587576452&+003 16 0

8609520_ l&-O01

,:_. 0 _ _499 o_O&+O0_

t :i.me _ ,,0 _:.4,._10000&+O06

i

station # throughput
:L 6.921494895&-O01

2 1 .4,-.0,.4864z._-00,L

3 1. 277680742&-001

4 1. 881 :L._._z.,:,..-_ -

5 6. 904740334&-OO.t

6 7.761366973..&- 001

- 7 8. 148548153.._.--'001

3 8 8.0594 "°_'- _. "oo756 _. "001

9 3.515738679&--001

10 8.7,:,,.)4. _906&--001

network:...throug hpu t = 1

aver'., del ay_per .ftame
: simulation

aver delay / frame success reject
I. 805968247&+003 :1.9 0

8. 799417090&_-003 10 0

9. 7833L_.1.650&+003 14 0

6. 6448586918M.003 18 0

1.810350483&+003 18 0

1. 610541035&_003 19 0

1. 534015602&+003 16 0

1 . 550973214&+003 14 0

3. [_55440589&+003 21 0

1. 432918509&+003 12 0

.864228580&-001

= 3.8,. ,_780oi 1&+O03

t i me 4. ,318140000 .&+O06

I)

